Supplementary Files

6S rRNA gene sequences obtained from three seafloor samples by three different

Fig. S1 Rarefaction and alpha diversity analyses. (a) Rarefaction curves illustrating the number of OTUs (clustered at 3% dissimilarity cut-off) from 16S rRNA sequence reads. (b) Boxplots of alpha diversity estimator calculations of all PEI stations

Fig. S2 Beta-diversity of PEI samples. (a) Non-metric multidimensional scaling (NMDS) ordination bacterial and archaeal communities (2D stress = 0.085) based on operational taxonomic units (OTUs) across all samples. (b) Hierarchical clustering tree on the OTU level based on the Bray-Curtis distance

Fig. S3 The relative abundance of dominant (>1%) bacterial and archaeal taxa at class level across F-max, OMZ and Deep samples

Table S1 Geographical and physicochemical variables of oceanic samples obtained in the vicinity of the PEIs during the 2015 Marion relief cruise on-board the SA Agulhas II RV

Station number (PEI-X)	Sample name	Sample type	Water mass	Sampling date (dd/mm/yy)	Long (E°)	Lat (S°)	Salinity (PSU)	Oxygen (ml/l)	Temp (°C)	Fluor (mg/m³)	Depth (m)	Sounding (m)
	F-max1	F-max	SASW				33.81	6.66	7.29	2.54	37.68	
PEI1	OMZ1	Oxy-min	AAIW	04/23/2015	37.296	45.748	34.56	3.79	2.69	0.77	1214.23	2579
	Deep1	Deep	NADW				34.78	4.50	2.07	0.77	2531.52	
	F-max2	F-max	SASW	04/24/2015	27.200	46.752	33.84	6.47	7.75	1.80	46.60	2202
PEI2	OMZ2	Oxy-min	AAIW	04/24/2015	37.309	46.752	34.60	3.79	2.66	0.78	1315.78	3302
	Deep2	Deep	NADW				34.73	4.45	4.1	0.78	3242.46	
	F-max3	F-max	SASW*	04/26/2015	37 900	46 750	33.81	6.59	7.04	1.98	50.57	210
PEI3	OMZ3	Oxy-min	SASW*	04/20/2015	37.900	40.750	34.05	5.98	5.95	0.78	197.26	210
	Deep3	Deep	SASW*				34.05	6.01	5.95	0.78	199.24	
	F-max4	F-max	SASW	04/25/2015	38 500	46 750	33.80	6.66	6.68	1.98	44.62	1022
PEI4	OMZ4	Oxy-min	AAIW*	01/25/2015	50.500	10.750	34.46	3.94	2.85	0.78	1002.17	1022
	Deep4	Deep	AAIW*				34.56	4.00	2.4	0.78	1013.23	
	F-max5	F-max	AASW				33.76	6.92	4.77	1.67	68.42	
PEI5	OMZ5	Oxy-min	AAIW	04/25/2015	37.301	47.501	34.55	3.73	2.57	0.78	979.40	4137
	Deep5	Deep	AABW				34.66	4.78	0.21	0.78	4057.09	

PEI, Prince Edwards Islands; SASW, Sub-Antarctic Surface Water; AAIW, Antarctic Intermediate Water; NADW, North Atlantic Deep Water; AASW, Antarctic Surface Water; AABW, Antarctic

Bottom Water; Long, Longitude; Lat, Latitude; Temp, Temperature; Fluor, Fluorescence; * shallow stations without water mass variation.

Station number (PEI-X)	Sample name	Silicate (µm/L)	Nitrate (µm/L)	Phosphate (µm/L)	AP (mmol.h.ml)	NAG (mmol/h/ml)	LAP (mmol/h/ml)	BG (mmol/h/ml)	BX (mmol/h/ml)
	F-max1	2.00	13.24	1.27	0.0150	0.00150	0.02100	0.02234	0.00310
PEI1	OMZ1	62.44	35.19	2.76	0.00450	0.00028	0.00510	0.00100	0.00120
	Deep1	70.45	32.41	2.98	0.00180	0.00012	0.00230	0.00030	0.00048
	F-max2	1.62	15.96	1.13	0.01230	0.00130	0.01900	0.01876	0.00220
PEI2	OMZ2	76.77	34.43	2.30	0.00380	0.00032	0.00310	0.00090	0.00098
	Deep2	121.68	27.82	3.30	0.00020	0.00003	0.00056	0.00002	0.00066
PEI3	F-max3	2.20	17.11	1.46	0.02876	0.00355	0.03500	0.03344	0.00430
	OMZ3	10.65	26.27	1.56	0.01134	0.00230	0.02900	0.00153	0.00290
	Deep3	13.67	25.30	1.63	0.01240	0.00340	0.04330	0.00298	0.00322
	F-max4	2.50	18.19	1.34	0.02100	0.00312	0.02900	0.02990	0.00390
PEI4	OMZ4	58.70	38.41	2.29	0.00376	0.00190	0.00450	0.00123	0.00067
	Deep4	64.98	38.55	2.28	0.00361	0.00140	0.00520	0.00113	0.00047
PEI5	F-max5	3.50	19.10	1.34	0.01110	0.00089	0.01100	0.01209	0.00190
	OMZ 5	50.93	37.86	2.00	0.00250	0.00004	0.00920	0.00119	0.00056
	Deep5	135.07	14.19	3.90	0.00010	0.00002	0.00012	0.00001	0.00003

Table S2 Nutrient and extracellular enzyme concentrations of seawater samples obtained along the PEI transect.

AP, Alkaline phosphate; NAG, N-acetyl-β-glucosidase; LAP, Leucine aminopeptidase; BG, β-Glucosidase; BX, β-Xylosidase.

Extracellular enzyme	Functional activity	Nutrient result and function in marine ecosystem	Substrate proxy
β-Glucosidase (BG)	Hydrolyses non-reducing D-glucose residues in polysaccharides	Release of glucose. aids in carbon acquisition	4-Methylumbelliferyl β-D-glucopyranoside
β-Xylosidase (BX)	Hydrolyses xylans by cleaving non-reducing D- xylose	Releases xylose; Aids in carbon acquisition and POM degradation	4-Methylumbelliferyl β-D-xylopyranoside
N-acetylglucosaminidase (NAG)	Hydrolyses chitin related oligopolymers by acting on D-glucosominide residues	Releases glucosamine residues; Aids in nitrogen acquisition	4-Methylumbelliferyl N-acetyl-β-D- glucosaminide
Alkaline phosphatase (AP)	Hydrolyses phosphate from compounds such as nucleotides. proteins and monoesters	Releases inorganic phosphorus; Aids in phosphorus acquisition	4-Methylumbelliferyl phosphate
Leucine aminopeptidase (LAP)	Degrades polypeptides by removing N-terminal amino acids	Releases amino acids; Aids in nitrogen acquisition	L-Leucine-7-amido-4- methylcoumarin hydrochloride

Table S3 Extracellular enzymes and their reported function in the marine ecosystem. Information was retrieved from Sinsabaugh *et al.* (2012), Arnosti (2014), Kellogg and Deming (2014) and Baltar *et al.* (2017).

Sample name	High quality reads	Observed OTUs	ACE	Chao1	Shannon	Good's coverage (%)	β- diversity	Gamma
F-max1	51147	565	801.67	821	6.15	99.32	1.75	
F-max2	40831	482	616.77	590	5.56	99.54	2.21	
F-max3	56977	647	935.08	960	5.95	99.19	1.49	1183
F-max4	54816	570	746.47	723	6.57	99.44	1.69	
F-max5	39448	386	489.10	465	5.42	99.65	2.71	
OMZ1	52420	481	574.56	587	6.69	99.65	2.04	
OMZ2	28117	381	533.87	532	6.11	99.60	3.03	
OMZ3	38825	499	623.10	626	5.81	99.54	2.08	1153
OMZ4	33598	543	660.60	690	6.47	99.54	2.01	
OMZ5	34591	540	694.75	711	6.83	99.52	2.07	
Deep1	40405	807	954.19	955	7.01	99.34	1.72	
Deep2	40901	401	650.05	637	6.49	99.51	3.36	
Deep3	39337	706	917.79	940	7.23	99.33	1.98	1530
Deep4	30793	465	595.39	609	6.46	99.58	3.14	
Deep5	41459	670	845.48	814	6.88	99.42	2.07	
Total	623665*	1891*						

Table S4 OTU observations, alpha diversity indices and good's coverage at 3% genetic dissimilarity derived from16S rRNA gene analysis of PEI seawater samples.

*A total of 1891 different OTUs were obtained after all samples were normalised to 28117 reads; PD = Phylogenetic diversity

Table S5 Statistical significance of the nMDS plot using *adonis* analysis.

	adonis R ²	<i>adomis</i> p
All	0.34	0.005
F-max vs OMZ	0.37	0.017
OMZ vs Deep	0.10	0.593
F-max vs Deep	0.36	0.014

Bold values are significant values (p < 0.05); p-values were adjusted using the Benjamini and Hochberg method for multiple testing using the stats R package.

Table S6 The core microbiome across and between all sample depths.

	Class level	Lowest taxa assignment	Taxa group	Count	Relative abundance (%)
All (n=71)	Acidimicrobiia	Sva0996 marine group	f	2	2.82
	Alphaproteobacteria	PS1 clade	f	1	1.41
		AEGEAN-169 marine group	g	2	2.82
		SAR11 clade	0	16	22.54
	Cyanobacteria	Prochlorococcus	g	2	2.82
		Synechococcus	g	1	1.41
	Deltaproteobacteria	SAR324 clade (Marine group B)	p	2	2.82
	Flavobacteriia	NS5 marine group	g	3	4.23
	Gammaproteobacteria	Pseudoalteromonas	g	2	2.82
		Alteromonas	g	1	1.41
		SAR86 clade	f	15	21.13
		Pseudohongiella	g	2	2.82
	Marine Group I	Candidatus Nitrosopumilus	g	10	14.08
	Planctomycetacia	Planctomycetaceae	f	1	1.41
	Thermoplasmata	Marine Group II	f	5	7.04
	Marinimicrobia (SAR406 clade)*	Unassigned	*	5	7.04
	Verrucomicrobiae	Roseibacillus	g	1	1.41
F-max (n=34)	Alphaproteobacteria	PS1 clade	f	1	2.94
		Rhodobacteraceae	g	1	2.94
		AEGEAN-169 marine group	0	2	5.88
		SAR11 clade	0	10	29.41
	Bacteroidetes	NS5 marine group	g	5	14.71
	Cyanobacteria	Prochlorococcus	g	2	5.88
		Synechococcus	g	1	2.94
	Euryarchaeota	Marine Group II	f	1	2.94
	Gammaproteobacteria	SAR86 clade	f	9	26.47
	Marinimicrobia (SAR406 clade)	Unassigned	*	1	2.94
	Verrucomicrobiae	Roseibacillus	g	1	2.94

f = family; o = order; g = genus; * = unassigned

OMZ (n=41)	Acidimicrobiia	Sva0996 marine group	f	1	2.44
	Alphaproteobacteria	SAR11 clade	0	11	26.83
		PS1 clade	f	1	2.44
		AEGEAN-169 marine	g	1	2.44
		group			
	Deltaproteobacteria	SAR324 clade(Marine group B)	0	1	2.44
	Flavobacteriia	NS5 marine group	g	2	4.88
	Gammaproteobacteria	JL-ETNP-Y6	f	1	2.44
		Pseudoalteromonas	g	2	4.88
		ZD0417 marine group	g	1	2.44
		SAR86 clade	f	3	7.32
		Pseudomonas	g	1	2.44
		Pseudohongiella	g	1	2.44
	Marine Group I	Marine Group I	c	7	17.07
	Marinimicrobia (SAR406 clade)	Unassigned	*	3	7.32
	Thermoplasmata	Marine Group II	f	4	9.76
	Verrucomicrobia	Roseibacillus	g	1	2.44
Deep (n=41)	Acidimicrobiia	Sva0996 marine group	f	1	2.44
	Alphaproteobacteria	PS1 clade	f	1	2.44
		SAR11 clade	0	6	14.63
		AEGEAN-169 marine group	g	1	2.44
	Deltaproteobacteria	SAR324 clade(Marine group B)	0	1	2.44
	Flavobacteriia	NS5 marine group	g	2	4.88
	Gammaproteobacteria	JL-ETNP-Y6	f	7	17.07
		Pseudoalteromonas	g	2	4.88
		SAR86 clade	f	3	7.32
		Pseudohongiella	g	1	2.44
		Pseudomonas	g	1	2.44
	Marine Group I	Candidatus Nitrosopumilus	g	9	17.07
	Marinimicrobia (SAR406 clade)	Unassigned	*	3	7.32
	Thermoplasmata	Marine Group II	f	2	9.76
	Verrucomicrobiae	Roseibacillus	g	1	2.44

f = family; o = order; g = genus; * = unassigned taxa group