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ABSTRACT Congestion in dense traffic networks is a prominent obstacle towards realizing the performance
requirements of 5G new radio. Since traditional adaptive traffic signal control cannot resolve this type of
congestion, realizing context in the network and adapting resource allocation based on real-time parameters is
an attractive approach. This article proposes a radio resource management solution for congestion avoidance
on the access side of an integrated access and backhaul (IAB) network using deep reinforcement learning
(DRL). The objective of this article is to obtain an optimal policy under which the transmission throughput
of all UEs is maximized under the dictates of environmental pressures such as traffic load and transmission
power. Here, the resource management problem was converted into a constrained problem using Markov
decision processes and dynamic power management, where a deep neural network was trained for optimal
power allocation. By initializing a power control parameter, θt , with zero-mean normal distribution, the DRL
algorithm adopts a learning policy that aims to achieve logical allocation of resources by placing more
emphasis on congestion control and user satisfaction. The performance of the proposed DRL algorithm was
evaluated using two learning schemes, i.e., individual learning and nearest neighbor cooperative learning,
and this was compared with the performance of a baseline algorithm. The simulation results indicate that
the proposed algorithms give better overall performance when compared to the baseline algorithm. From the
simulation results, there is a subtle, but critically important insight that brings into focus the fundamental
connection between learning rate and the two proposed algorithms. The nearest neighbor cooperative
learning algorithm is suitable for IAB networks because its throughput has a good correlation with the
congestion rate.

INDEX TERMS Congestion control, deep reinforcement learning, integrated access and backhaul, millime-
ter wave, nearest neighbor, resource allocation.

I. INTRODUCTION AND BACKGROUND
The initial deployments of 5G networks and the smart devices
that are currently running have emphasized the enhanced
mobile broadband and the massive machine-type communi-
cations legs of 5G use cases [1]. However, 5G new radio (NR)
is continually being developed to provide the foundation for
future mobile and wireless networks by supporting other
new types of applications. Various technologies that enable
the existence of smart mobile terminals in 5G networks,
which are expected to access unused spectral bands in an
opportunistic manner, have been proposed in literature. These
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technologies include cognitive radio (CR) terminals, millime-
ter wave (mmWave) communications, heterogeneous net-
works, device-to-device communication, energy harvesting,
and smart grids [2]. The increasingly densified demand for
high throughput and low latency communications is envis-
aged to bring about a paradigm shift in the design of cellular
networks, where smart terminals will perform opportunistic
spectrum access through CR technology. From the 5G NR
perspective, a smart device should be aware of its environ-
ment through being able to sense and identify the various
radio frequency activities in its surroundings, and it should
be able to learn and make reasonable decisions [3]. It is
therefore evident that learning is an essential tool to enable
5G networks to provide better quality of service (QoS) and
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quality of experience (QoE) to end users. Among the require-
ments to afford users high QoS and QoE is utilizing the
available information in a real-time manner based on the
network, the devices and the applications, as well as the users
in their different contexts [4]. This kind of context awareness
introduces the need to integrate multiple parameters in the
optimization of network functionalities. This seems to be a
design requirement for current and future smart devices, and
as such, a number of models that consider context aware-
ness for 5G networks have been proposed [5]–[7]. With the
persistent need for integrating multiple parameters, and per-
form dynamic load balancing, arises the need for optimizing
network functionalities. However, the critical aspect of the
context awareness problem is the requirement to understand
the manner in which mobile and wireless devices perceive,
operate, and experience a space.

The increased cell densification of 5G networks makes it
difficult and costly for mobile network providers to provide
fiber backhaul to every access point in the network [8]. As a
result, integrated access and backhaul (IAB)was developed to
address this challenge by leveraging the availability of large
amounts of spectrum in the mmWave frequencies [9]. In IAB
networks, the wireless spectrum is shared between access and
backhaul and the sharing is either in-band, i.e. using the same
frequency bands, or out-of-band, but on overlapping time
slots in order to make optimal use of resources [10]. In a typ-
ical IAB network, a slave base station (SBS) sends/receives
backhaul data wirelessly through a single direct link or over
multiple hops to/from a master base station (MBS). IAB can
enable flexible and very dense network deployment without
the need for densifying the transport network accordingly,
especially when operating in mmWave bands, and it is envis-
aged to be the most flexible and cost-effective backhaul tech-
nology for mobile networks in 5G networks [11]. However,
designing an efficient and high-performance IAB network
that satisfies 3GPP requirements, such as handling stochastic
and bursty data, is still an open research challenge. The
stochastic and bursty nature of user data requirements in 5G
NR presents itself as a huge challenge to network designers.
In addition to the dynamics of the wireless environment,
such as random user mobility, fading, shadowing, and path
loss effects, the challenge of unbalanced traffic distribution
makes it difficult to rely on a single model for solving net-
work optimization problems [4]. To solve the problem of
traffic balancing, IAB node coordination is a requisite. In the
case of IAB node coordination, efficient signaling exchange
among the medium access control (MAC) layers of differ-
ent IAB nodes is required, considering the rate and latency
constraints of wireless backhaul links. For successful IAB
node coordination, uplink and downlink interference has to
be introduced in case of asynchronous IAB node transmis-
sion mode. Thus, adaptive intelligence algorithms that make
adaptive decisions on the link and user/base station (BS)
scheduling with fairness and half-duplex constraints need to
be implemented at the MAC layer of IAB nodes. However,
this requires centralized training procedures to be distributed

among local IAB nodes. The key requirements for the suc-
cessful implementation of IAB networks are flexibility and
programmability, which involve the incorporation of software
defined networking (SDN).

Autonomous resource management and congestion avoid-
ance is desirable in 5G networks in order to continuously
satisfy user requirements. By applying SDN, mobile oper-
ators can enforce per-user or even per-BS policies, and in
case of congestion or link failure, the control plane could
quickly reconfigure itself to deal with the available traf-
fic [12]. Resource provisioning schemes and deep reinforce-
ment learning algorithms that are applicable for mixed traffic
in virtualized radio access networks have been proposed [13],
[14]. The proposed shape-based heuristic algorithms were
shown to improve resource utilization and user satisfaction
through system-level simulations, which considered varying
user requirements. In this work, we aim to improve resource
management and user satisfaction through congestion avoid-
ance by applying deep reinforcement learning in mm-wave
IAB networks.

A. RESOURCE ALLOCATION IN IAB NETWORKS
Because of the radio resource sharing between access and
backhaul, the IAB network architecture requires a different
RA approach from other typical wireless standards. This
means that end-to-end RA algorithms are most suitable
for IAB networks. To this effect, [9] proposed an end-to-
end system-level algorithm to improve cell-edge throughput.
Through end-to-end simulations, the authors demonstrated
the cell edge throughput advantage offered by IAB networks.
In their paper, they also highlighted some research chal-
lenges that require further investigation. The success of IAB
networks is related to cell density, which requires accurate
deployment of heterogeneous BSs in order to achieve bet-
ter network load balancing. BS deployment and network
topology are better handled using stochastic geometry and
point processes; as a result stochastic geometry-based algo-
rithms were proposed to tackle load-balancing problems.
Based on the stochastic geometric framework, [15], [16]
proposed dynamic load-balancing schemes for IAB opera-
tion in heterogeneous networks. Here, the authors used point
process-based models on sub-6GHz networks. The applica-
tion of stochastic geometry and point processes for dynamic
load balancing was extended in the context of mmWave
networks in [16] and [17]. The authors in [18] analyzed the
performance of three wireless backhaul partition strategies in
an IAB network where all the SBSs are wirelessly backhauled
over mmWave links. For the same network model, the work
of [19] considered the impact of limited backhaul capacity in
mmWave IAB networks by analysing the rate coverage prob-
ability for two types of resource allocation at the MBS. The
authors of [20] have demonstrated the feasibility of in-band
wireless backhaul in mmWave bands, and they also presented
a baseline scheduling scheme for SBS-SBS communications.

Since CR technology will be integrated into every future
technological innovation, every wireless access point must
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have a cognitive engine for automated handover. The role
of the cognitive engine will be to assist in BS-user equip-
ment (UE) association, whereby UE can instantaneously
switch between BSs for better QoS. This is practically impos-
sible, considering that the prospective BS might not imme-
diately have the resources to support the QoS requirements
of the newly arriving users. The resulting handover delays
may lead to transmission delays, hence deteriorating the QoE.
Many contributions in user association begin by tacking the
problem of aggregated interference generated by users [21].
Such problems are usually modeled as multi-agent systems
based on the IEEE 802.22 standard for wireless regional
area networks. In all the existing contributions, the BSs are
generally the agents in control of admitting users, and the
problems are usually modeled as multi-agent systems. Real-
timemulti-agent reinforcement learning techniques known as
decentralized Q-learning are used to manage the aggregated
interference generated by multiple users. To this effect, two
scenarios are considered to enable the multi-agent systems to
learn, i.e., (i) agents having complete or partial information
about the environment, and (ii) agents directly interacting
with the surrounding environment in a distributed fashion.
As a result, the resulting spectrum management framework
improves the spectrum utilization efficiency while increasing
the energy efficiency, as reported in [22]. However, since
balancing the spectral efficiency and energy efficiency has
become a critical challenge in current heterogeneous and
resource-constrained networks, channel characteristics and
energy efficiency are analyzed using joint channel selec-
tion and power control spectrum decision algorithms based
on distributed Q-learning. In this way, the selection of the
learning strategy designed to solve the optimization prob-
lem introduces distributed strategy estimation. This was the
case in [23], where the authors formulated a channel access
problem using a non-cooperative game. In their contribu-
tion, each channel can only be used by one user at a time.
However, the channel switching distance was only limited
to a certain scope by considering transmission delays, and
the optimal access policy was dependent on the long-term
behavior of other users in the network. The solution to
this non-cooperative game was achieved using a multi-agent
Q-learning algorithm, which required neither prior knowl-
edge of channel dynamics nor negotiations among players.

As opposed to traditional wireless network environments,
where BSs employ static spectrum allocation strategies such
as full-reuse or fixed orthogonal allocation methods in order
to ease the system computation and implementation com-
plexities, in IAB networks such spectrum re-use schemes are
inefficient. For example, in ultra-dense IAB environments,
where there may be severe co-tier and cross-tier interference
among neighboring BSs, static spectrum allocation schemes
are inefficient. In such ultra-dense environments, the rate
of UEs associated with an SBS is determined by how the
total wireless bandwidth is split between the backhaul link
and the access link. This makes the achievable throughput
sensitive to the spectrum allocation strategies applied such

that when the number of devices per BS increases and more
spectrum resources become available, the solution space for
spectrum allocation increases exponentially. In the reinforce-
ment learning (RL) community, it is believed that the best
way to address this problem is to employ model-free RL
algorithms. As a result, the authors in [24] used a scalable and
model-free RL algorithm to handle the large state spaces. This
was done to provide good approximation of the Q-values and
perform dynamic spectrum allocation in order to maximize
the sum log-rate, while satisfying the UE demands. In order
to solve the optimization problem, two deep reinforcement
learning (DRL) algorithms were applied, i.e., double deep
Q-learning networks and actor-critic spectrum allocation.

Considering the aforementioned intelligent developments
in IAB schemes, it is believed that the IABmodeling problem
requires artificial intelligence (AI) strategies. Even though
the application of AI strategies has not been intensively
explored in IAB networks, recurrent neural networks (RNNs)
are one of the state-of-the-art models that are favorable owing
to their ability to store information over extended time inter-
vals. Using RNNs, historical information can potentially be
used to predict traffic from all user groups and to facilitate
the optimization of future transmission time interval config-
urations. The disadvantage of the RNN is that even if one
knew all the relevant statistics, tackling the RA problem in
IAB networks in an exact manner would result in a partially
observable Markov decision process with large state and
action spaces. In this way, the complexity of the problem
is compounded by the lack of prior knowledge regarding
the stochasticity of traffic as well as the unobservable chan-
nel statistics at each BS node, which makes it generally
intractable.

B. RESEARCH MOTIVATION
From the reviewed research contributions, it transpired that
the dynamic RA problem and data transmission resource
configuration still remains a less investigated problem in
IAB networks. Existing algorithms focus on finding low-cost
routes for traffic to reach the MBS, without finding ways to
minimize resource exhaustion at the current BS. A framework
that avoids resource exhaustion must have the capability to
adapt to different learning mechanisms as well as real-time
system requirements effectively. Future mobile and wireless
networks’ operational spaces will be very diverse and will
vary significantly, which will lead to scenarios not postu-
lated during the design phase. Because of the unpredictability
of future wireless environments, rule-based decision-making
that selects decisions directly from training may not be ideal.
As a result, it may not be effective to design a priori cost
functions and then solve optimal control problems in real-
time. This would be detrimental. For this purpose, the deci-
sion maker of an IAB system has to be implemented using a
deep neural network DNN) in order to provide action choices
for any given state of the system. DNNs are crucial for acting
optimally in highly stochastic and dynamic environments
such as IAB networks, where the value of taking an action
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depends on future actions and states. Therefore, it is at this
point where DRL strategies become an attractive alternative.

C. RESEARCH CONTRIBUTIONS
The objective of this article is to obtain an optimal policy
under which the transmission throughput of all UEs is maxi-
mized under the dictates of environmental pressures such as
traffic load and transmission power. Using a DRL strategy,
a logical combination of wireless channel gains and traffic
load is used to influence the system to provide better QoS
without upsetting power consumption. The main contribu-
tions of this article are summarized as follows:
• Adaptive Congestion Control: A heterogeneous
broadband access network is proposed with investiga-
tions based on IAB network transmission. The effects
of congestion on the link layer behavior are handled
by defining the levels of congestion as the exact values
of system utilization. SBS traffic load measurement is
implemented using an M/G/1 queuing model with an
ergodic arrival process. The optimization problem was
formulated as a QoS maximization problem that places
distinct importance on estimating service-level pressure
on the SBS. This means that the system must be able to
learn context-related behaviors and execute appropriate
actions within a reasonable time by efficiently leverag-
ing the feedback from the output.

• DRLAdaptive Learning Scheme: Because of the vari-
ation in UE service rates and their generation rates,
a DRL algorithm that uses an online RL approach is
proposed. Here, the system continuously monitors the
congestion rate of the SBS, where the output of the
DNN agent is a vector of possible transmission powers.
Then, based on the already allocated resources, which
define the current traffic load, the decision function of
the DRL generates optimal actions using a policy πθ .
At this point, the need for a perfect control system is
pressingly important, such that the computation of the
DRL agent then focuses on avoiding a situation whereby
the system is placed under immense pressure to increase
the packet departure rate by raising the transmission
power, which may result in high energy consumption.
Under this approach, the congestion rate, throughput,
and the quality of experience are evaluated. In order
to realize a reliable system, the proposed approach
is evaluated using two algorithms, i.e., (i) individual
learning algorithm, and ii) nearest neighbor cooperative
algorithm.

The rest of the paper is organized as follows: Section II
describes the proposed IAB networkmodel and gives detailed
discussions of the queuing model and state- and action-space
definitions. Section III discusses the mathematical formu-
lation of the problem and presents the optimization prob-
lem description. Section IV describes the proposed adaptive
learning scheme and provides a detailed solution using a
DRL strategy. In Section V, the performance of the pro-
posed adaptive learning scheme is evaluated using the two

proposed algorithms and simulation results are presented
and discussed. The concluding remarks of the performance
analysis of the proposed learning scheme are given in
Section VI.

II. PROPOSED SYSTEM MODEL
Considering the 3GPP heterogeneous broadband access net-
work access for multi-hop IAB networks [25], the uplink
transmission of a two-tier IAB network is investigated.
Here, the MBS, indexed by m0, is equipped with an omni-
directional antenna. A setM−

= {1, 2, . . . ,M} of IAB nodes
is uniformly deployed within its coverage area and connected
to it via mmWave backhaul. Therefore, let M = m0 ∪M−

denote the set of all BSs such that |M| = 1 + M . It is
assumed that each IAB node has a representative group of
UEs associated with it such that K = {1, 2, . . . ,K } denotes
the set of UEs associated with each IAB node according to
a call admission scheme [26], as shown in Fig. 1. Assuming
the non-stand alone deployment scenario of the 5G NR [27],
the convenience of using physical resource blocks as a mea-
sure of physical radio resources is used. In line with the
IAB setup, the nodes are assumed to be full-duplex capable,
all SBS-SBS links are symmetrical, and proper bandwidth
partitioning according to access and backhaul is adhered to.
This means that each IAB node is assumed to be equipped
with two antennas, i.e., one for access to serve its associated
UEs, and another for wireless backhaul with the SBS. The
effects of SBS congestion on the link layer behaviour are used
to evaluate achievable throughput and user satisfaction in
terms of system utilization. Fig. 1 also shows the distribution
of environmental states to be input into the algorithm, i.e., the
average waiting time, and average SBS load. These are fed as
inputs into the DNN agent, and based on the computation of
the DNN agent, optimal transmit power or change of learn-
ing scheme is the output/action. The environmental reward,
which results from the optimal action, leads onto another
environmental state, and so on.

FIGURE 1. Illustration of a typical multi-hop IAB network that
implements a DRL algorithm.
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A. NOTATIONS AND DEFINITIONS
In order to enhance readability and ease of exposition,
the notations used in this article and their descriptions are
listed in TABLE 1 below.

TABLE 1. List of notations and their definitions.

B. QUEUING MODEL AND TRAFFIC LOAD
MEASUREMENTS
The average SBS load is a result of traffic injected by K
sources, i.e., UEs, at a rate, λ(t), and arriving at the SBS in a
collective arrival process, 3(t), denoted as follows:

3(t) =
T−1∑
t=t0

λ(t), t0 = 0, 1, . . . ,T − 1 (1)

which represents the arrival flow, whose bivariate extension
for the range t0 ≤ t ≤ T is defined as3(t0, t) = 3(t)−3(t0),
up to a time horizon T . Assuming that the system ismonitored
at discrete time intervals, t = 0, 1, 2, . . ., the duration 1t =
t1−t0 represents a single time slot. To guarantee the existence
of stationary limits, a discrete-time M/G/1 queuing system
with a stationary and ergodic arrival process is assumed [28].
Assuming that theM/G/1 defines the arrival and service pro-
cess of a transmission buffer capable of handling C packets,
based on the stationary and ergodic assumption, the system
utilization factor can be defined as follows:

u(t) =
E[λ(t)]
C

, (2)

where E[λ(t)] is the long-term expectation of the packet
arrival process. The consumed capacity is the monitored
condition, whose trend is periodically tracked using an expo-
nentially weighted moving average defined as follows [29]:

1ρ = ω ·1ρ(t)+ (1− ω)(ρ(t)− ρ(t − 1)), (3)

where 1ρ is the mean value of the load behavior,
with 0 < ω < 1 representing the decay factor,

which is selected through adaptive weights. The occupancy
level marker between two successive time slots is given
by (ρ(t)− ρ(t − 1)) [30].

C. DEFINING STATE AND ACTION SPACES
In response to the variation in request generation rate from
the UEs, the change in the distribution of their requests, and
the SBS processing rate, the state space of the system can
be defined in accordance with the average waiting time and
the average SBS load. The implementation of SBS traffic
load measurements requires that the state and action vectors,
as well as the reward, be defined. As stated above, the com-
putation of control variables can only be performed at the
beginning of the first time slot; t = 0 is regarded as the
time when the start-state is defined, i.e., s0. With the service
rate and transmission delays assumed to be independent and
generally distributed with respect to the service rate, the state
space can be defined as follows:

s = {C(t), ρ∗(t)}, (4)

where C(t) is the time-average number of packets in the
system up to time t , which tends to the steady state as t →∞.
Since the state space reveals howmuch pressure is endured by
the SBS’s transmission buffer, the computation of the DNN
agent determines either the transmission power or change of
learningmechanism as the output. Therefore, the action space
can be represented in vector form as follows:

a ,< p(t), z(t) >, (5)

where p(t) is the selected transmission power and z(t) is the
required transmission throughput. In order to arrive at the
required throughput, the selection of the optimal transmission
power takes precedence.

III. MATHEMATICAL PROBLEM FORMULATION
Let k ∈ K represent the generic progression in progress
connection so that the range of admitted UEs can be rep-
resented as [1,K ]. Assuming uniformity of channel fading
within one sub-channel and a difference on the other sub-
channels, the signal-to-interference plus noise ratio (SINR)
between the k th UE and the mth SBS can be expressed as
follows:

γk,m =
pkgk,m∑

j∈M− pkgkj + N0
, ∀k,m (6)

where pk is the transmission power, gk,m = αk,mhk,m;
with αk being the distance-dependent fading coefficient
and hk,m = exp(1) being the frequency-dependent small-
scale fading [24]. The first term in the denominator rep-
resents the co-tier interference, and the term N0 represents
the white Gaussian noise spectral density. Assuming that
self-interference cancellation abilities exist in both UEs and
SBSs, the achievable instantaneous transmission rate between
UE k and SBS m is determined as follows:

r(γk,m) = Ba log2
(
1+ γk,m

)
, (7)
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where the term Ba denotes the access bandwidth. For all
the admitted flows, the SBS has the problem of finding the
optimal transmission power that corresponds to the bitrates of
the corresponding QoE requirements. In this case, the buffer
occupancy and power allocation are inextricably intertwined
since proper power control is required to increase the ser-
vice rate and avoid congestion, while saving system energy.
Therefore, depending on the current traffic load, the load at
the SBS can be defined as follows [31]:

ρ∗(t) =
Ci(t)∑K

k=1 B
∗ log2(1+ γk,m)

, (8)

where Ci(t) ≤ C is the capacity required by the admitted
UEs, and B∗ is the sub-channel width. The average service
time of all UE requests has to be minimized, which means
that admission and processing delays should be at their min-
imum. Thus, the average service time minimization problem
becomes a QoS maximization problem, and it is distinctly
important to have a perfect estimate of the service pressure
at the SBS. Therefore, the sum rate of the admitted flows can
be defined as

Qk (r(γ ∗, [0,T ])) =
T∑
t=1

r(γ (t)), ∀k ∈ K (9)

where [0,T ] is the overall time interval during which the
system performance is being monitored. For purposes of
simplification and ease of computability, it is assumed that all
the admitted flows have the same weighting at the SBS. Then,
the objective is to obtain the optimal policy that maximizes
the transmission throughput of the UEs connected to the SBS,
defined as follows:

P = argmax
γ ∗

Qk (r(γ ∗, [0,T ])), ∀k ∈ K (10)

subject to C1 :
K∑
k=1

rreqk,m ≤ r(γ (t)),

C2 : r(γ (t)) ≥ �(γ ∗, [0,T ]), ∀k ∈ K
C3 : ρ∗(t) < ψ · Ba, ∀k ∈ K
C4 : ζk (γ ∗, [0,T ]) ≤ 1− ε, ∀k ∈ K

(11)

whereP represents a function f (x) = Qk (r(γ ∗, [0,T ])) that is
designed to obtain maximum network utility, where γ ∗ repre-
sents the target SINR for achieving proportional transmission
fairness, r(γ ∗, [0,T ]). According to proportional fairness,
r(γ ∗, [0,T ]) = logγ ∗, which is supported by constraint C2,
indicating that the QoS requirements (7) of the admitted UEs
must be met. Based on theM/G/1 model, the satisfaction rate,
�(γ ∗, [0,T ]) ≈ σ/Ts is measured on a scale of 1 to 5 and
is assumed to be general, with Ts being the symbol duration.
The constraintC1 ensures that the bandwidth requirement for
all UEs is kept within the allocated access bandwidth Ba, with
rreqk,m being the required data rate. The constraint C3 ensures
that the traffic load, ρ, does not exceed the threshold of the
maximum capacity to avoid congestion and a subsequent

decline in the QoS [29]. This condition avoids the classi-
cal congestion collapse by tracking the congestion behavior.
Here, an SBS is allowed to admit UEs as long as it can still
cope with the requirements, until it hits the threshold where
the it becomes overloaded and goodput starts to decrease.
Lastly, the constraintC4 ensures that every action exploration
is kept within acceptable powers, where ζi(γ ∗, [0,T ]) =

γ
γ+1

is the power allocation condition, and ε is the exploration
parameter. When congestion has reached the threshold inC3,
the exploration of transmission powers is instantiated within
the power budget, without upsetting the energy consumption
of the system.

IV. PROPOSED DEEP REINFORCEMENT LEARNING
SOLUTION
In designing a better solution to solve the optimization prob-
lem in (10), a finite-source traffic model is assumed. The
finite-source traffic model is based on both the thinning pro-
cess and fading conditions and is assumed to be appropriate
for newly originated traffic [32]. Therefore, the input sample
that is clamped to the input of the DNN is computed based
on [5 : 5 : K ] sources injecting packets into the SBS
transmission buffer. Considering only the access part of the
IAB network, the input, output, and feedback processes of
the DRL algorithm define the appropriate learning scheme
to be used. Under each learning scheme, the network status
is relatively fixed under the assumption that the application
environment is known. In this way, the distribution of states,
actions, and rewards define the dynamics of the IAB network
and node behavior can be estimated using the pressure on the
communication and computation resources. Thus, the pro-
posed DRL algorithm consists of a hierarchical structure that
computes the solution for Q(γ ∗, a) ≈ σ/Ts. For the sake
of convenience, it is assumed that the state and observation
overlap perfectly so that it is easier to apply the DRL strategy
to this problem.

For any admitted UE, there has to be adequate computa-
tional resources allocated to it such that the required QoS is
met. Thus, using adaptive modulation and coding, the peak
data rate, and the gains from other transmitting technologies
within the cell, the spectral efficiency used in [33] is adopted.
Then, using the relationship between the state and action
spaces used in [34], the reward function can be formulated
as follows:

R(t) , σ = dz(t)LTs/1te, (12)

where d·e means that the transmission throughput has to be
calculated using the minimum power required to transmit
dxe bits per second, z(t) ∈ Z represents the transmission
throughput in packets/time slot and L represents the packet
length. Given that the packet throughput determines the num-
ber of bits per symbol, using the channel state, the system can
choose the transmission power from which the reward in (12)
can be determined. Here, the DNN agent generates an optimal
action a∗ ∈ A, which is the power allocation action that is
used to obtain the solution to (10). The action-value function
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stored in the Q-table at time t is the one that will be used to
select an action according to the current state through policy
π∗, as follows:

π∗(a|s) =
{
1, if a = argmaxa∈AQπ (s, a)
0, otherwise,

}
. (13)

After approximating the Q-function, a common off-line
algorithm that takes a greedy search is used to find the optimal
stochastic policy function π∗(a|s) [36]. A random variable,
Q(st , at ), is then considered for the estimation of Q(γ ∗, a) as
follows:

Q(st , at ) = Rt + β t max
at+1

Q(st+1, at+1), (14)

where Rt is the reward computed according to (12), β t ∈
[0, 1] is the discount factor and st+1 and at+1 represent the
next state and action, respectively. Thus, at each coherence
time, the agent builds its state using the information col-
lected from its transmission queue, and with this information
restricted to the QoS of each UE, the system computes the
rate level of each UE according to (7) and (10). To this point,
a sequence of transition probabilities is created to describe
the transitions from the current state st to the next state st+1,
current actions at to next actions, current rewards to future
rewards as follows:

P(st |at ) = pp(ptx |[gk,m, xt ], hk,m)pg(gt−1|gt ), (15)

where xt is the current power management. The system now
has a Markov property, such that the representation function
is a Markov model of the IAB environment with the tuple,
(st , at , rt , pt , st+1), t ∈ T . Here, the current channel state,
hk,m, taken from the current measurement of the received
signals is expressed using the channel transition distribution,
pg(gt−1|gt ). Then, the reward function Rt (st , at ) ∈ R is
represented as follows:

Rt (st , at ) = θ · Q(st , at ), (16)

where, the term θ represents the interference power con-
straint, which is an essential factor in both powermanagement
and in the estimation of Q(γ ∗, a). It should be noted that θ is
controlled by the pp(ptx |[gk,m, xt ]) in (15) above. Using (14),
and assuming that the state-action value function of the true
state is Q(st , at ), and is independent of the reward features of
st and at , (16) can be reformulated as follows:

Rt (γ ∗, p̂) = θ · Q(γ ∗, p̂), (17)

such that the solution to (10) can be summed into a state-value
function over a finite horizon as follows:

Qπt (γ
∗, p̂) = E

[
T∑
t=1

β tRt (γ ∗, p̂)

]
, (18)

which is the expected value of the reward based on the
transmission power, π is the optimal policy for all states and
actions defined by a value function, which is computed to
obtain the Bellman optimality equation [36]. The expression
β tRt (γ ∗, p̂) is the discounted reward at time step t , the sum

is over a finite horizon, T , and β t < 1 because the agent
is interested long-term returns. Thus,

∑T
t=1 β

tRt (γ ∗, p̂) is
the discounted reward obtained over T . Since the optimal
values of Rt (γ ∗, p̂) depend on the physical conditions of
the environment as well as the policy followed by the RL
strategy, the objective of maximizing (18) can be represented
as follows:

Qπt (γ
∗, p̂) = max

π
E

[
T∑
t=1

β tRt (γ ∗, p̂)

]
. (19)

Using the intuitive definition of the Bellmann optimality
equation, which expresses the fact that the value of a state
under an optimal policy must be equal to the expected return
for the best action taken from that state, Q∗ can be expressed
as follows:

Q∗(s, a) = E
[
Rt+1 + β max

at+1
Q∗(st+1, at+1)

]
=

∑
st+1,Rt

p(st+1,Rt |st , at )[Rt

+β max
at+1

Q∗(st+1, at+1]. (20)

Here, the expression
∑

st+1,Rt p(st+1,Rt |st , at ) represents
the transition probability. In the Bellman optimality equation,
the value of a state can be decomposed into the immedi-
ate reward and the discounted value of the successor state,
st+1 [37]. The Bellman optimality equivalent to Q∗ can be
derived by assuming perfect knowledge of (20). By assuming
perfect knowledge of Q∗, and that the deterministic policy π
is optimal, (13) holds. From the state-value function in (18),
the Bellman optimality equation for Qπ is computed using
the value function as follows:

Qπ (s, a)

= Eπ

[
∞∑
t=1

β tRt+1|st = s

]

= Eπ

[
Rt+1 + β

∞∑
t=1

β tRt+2|st = s

]
=

∑
a

π(a|s)
∑
st+1

∑
Rt

p(st+1,Rt |st , at )[
Rt + βEπ

[
∞∑
t=1

β tRt+2|st+1 = st+1

]]
=

∑
a

π(a|s)
∑
st+1,Rt

p(st+1,Rt |st , at ) [Rt + βvπ (st+1)] .

(21)

Using the relationship V ∗(s) = maxa∈A Qπ∗(st , at ) the
objective to maximize (18) can be computed as follows:

V ∗(s) = max
a∈A

Qπ∗(st , at )

= max
a

Eπ∗
[
∞∑
t=0

β tRt+1|st = s, at = a

]

114224 VOLUME 9, 2021



M. M. Sande et al.: Access and Radio Resource Management for IAB Networks

= max
a

Eπ∗
[
Rt+1 + β

∞∑
t=0

β tRt+2|st , at

]
= max

a
Eπ∗

[
Rt+1 + βV ∗(st+1)|st , at

]
= max

a∈A

∑
st+1,Rt

p(st+1,Rt |st , at )
[
Rt + βV ∗(s)

]
, (22)

which is the Bellman optimality equation for V ∗.
For small problems such as spectrum sensing, one may

start by making arbitrary assumptions for all Q-values and
then update them through trial-and-error as the policy pro-
gresses towards convergence. In this case, the update and
choice of action is done randomly, and as a result, the optimal
policy may not represent a global optimum [38]. However,
in mobile and wireless communications, the problems can
become large-scale, with discrete states and actions. Discrete
state transition probabilities need to be defined explicitly
based on a state space that is large. Constructing and storing
a set of Q-tables for large problems in a dynamic operating
environment becomes a daunting computational task since
the number of possible states grows exponentially with the
number of future states and actions to be calculated. As a
result, the amount of memory that is required to save and
update the Q-tables increase as the number of possible states
increase, and the amount of time required to explore each
state to create the required Q-table becomes unrealistic. Due
to the challenge of scaling and complexity in the traditional
RL strategy, advanced strategies such as DRL help to tackle
this challenge [39]. Thus, in order to proceed with the RA
problem in IAB networks, the RL strategy is combined with
the deep learning technique. Thus, we propose a DRL strat-
egy that is applicable in IAB networks, which applies the
successes of DNNs.

At this point, let a conditional prior probability vector P be
defined as a sufficient statistic substitute for the state, st , such
that (19) can be reformulated as follows:

Qπt (P, at ) = max
π

E

[
T∑
t=1

β tRt (Pij, at )

]
, (23)

where the term Pij represents the inter-state transition prob-
ability. Then, using dynamic programming, this problem
can be solved by finding the state-value function, Qπt (P),
as follows:

Qπt (P) = max
at

(Rt (Pt , at )+ βE{Qt+1(Pt+1|Pt )}), (24)

where Pt and Pt+1 represent successive transition proba-
bilities. Then, using (22), the Bellman optimality equation
for different channel variations can be obtained explicitly.
Assuming that a limit on T exists, the optimal transmission
rate can be reformulated as follows:

r̄t (γ ∗, ·) = lim
t→∞

T∑
t=1

rt (γ ∗, ·). (25)

Then, assuming that the interference caused by other tech-
nologies is stationary and ergodic, and P is a function of I ,

this limit exists with a probability of one and

E[r̄] = E[r(I ),P(I )]. (26)

Using the Labesgue-Stieljies integral [40], (26) can be
converted to a constrained problem as follows:∫

∞

0
r(γ ∗,P(γ ∗)) · dP(I ≤ γ ∗) ≥ r, (27)

where the function P solves the problem into a relatively
unconstrained power management function as follows:

min
P≥0

∫
∞

0
P(γ ∗) · dP(I ≤ γ ∗). (28)

However, one should note the underlying assumption that
the signal processing at the SBS is sufficient to provide an
accurate estimate of the interference power, using the total
received power.

A. TRAINING OF THE DNN AGENT
It is assumed that at each transmission time interval, the SBS
is required to offer a transmission throughput of z bits per
symbol in order to meet the QoS requirements of K admitted
flows. Using the system state, st ∈ S , the DNN agent has
to determine the minimum power required to transmit dze
bits per symbol. Given that the DNN consists of N : i =
0, 1, 2, . . . , n layers, i = 0 refers to the input layer, and
i = n+ 1 to the output layer. The input and output layers are
separated by four hidden layers, and the training process of
the DNN consists of the two stages described below. Firstly,
the DNN’s parameter θ is initialized with zero-mean normal
distribution. The DNN agent then takes the inputs as a sample
vector x into the first hidden layer. The feed-forward net-
work goes through a procession of hidden layers with hidden
features defined by h = f (x, θ). Here, the value of the jth

computational unit of the ith layer of the DNN architecture is
denoted as hij(a). In each link between two successive compu-
tational units of different hidden layers, is an assignment of a
weight Wjk , while on the computational node itself a default
activation internal bias bij is assigned. With the weight and
bias assignments, a rectified linear unit (ReLU) activation,
ReLU (x) = max(0, x), gives the node the necessary ‘‘firing’’
ability to compute the loss function using the input sample
from the previous layer. The ReLU is chosen to be used as
the activation function for the hidden layers because of its
delinquency in solving the vanishing gradient problem, owing
to its ability to transmit the error better than the prevalent
sigmoid function. This activation function is good for power
control DNN applications, especially when employed in the
hidden layers because the power values are greater than zero.
This computational pattern continues through the different
layers of the hidden section of the DNN until the output layer.

With the role of the output layer being to provide addi-
tional transformation to the hidden layer outputs, in order to
complete the task of the DNN, the design constraints need
to be satisfied. Since the output of the last hidden layer has
to be thresholded in order to obtain a valid probability at the
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output, this requires a careful effort. With y being the output,
the probability of the last hidden layer is denoted as follows:

P(y = 1|x) = σrelu(aj) = max{0,min{1, aij(a)}}, (29)

where aij(a) =
∑

k W
i
jk ĥ

i−1
k + b

i
j, so that when W i

jk ĥ
i−1
k + b

i
j

strays outside the unit interval, the gradient of the output of
the DNN would not be zero with respect to its parameters.
At the output layer, a logistic activation function is applied as
follows [31]:

ĥij(a) = 8sig(aij), where 8sig(a) = (1+ e−a)−1 (30)

is the sigmoidal function. During each step of the forward
procession just described, the weights and biases are updated
after each forward computation by propagating the weights to
the previous layer, before the forward procession continues to
the next layer. This is done by computing the weight updates
using the delta rule in order to adjust the weights of the
DNN, so as to minimize the loss value, which depends on
the type of loss function that is employed. Under the current
policy, πθt , the DNN outputs a relaxed action x̂t , which can
be represented by a parameterized function

x̂t = 8sig(ht ), where x̂t = x̂t,i, (31)

which represents the candidate action xk representing the
ith entry of x̂t , such that the power allocation action at the
output layer has to satisfy x̂t ∈ (0, 1). Therefore, using a
stochastic gradient descent algorithm, the resulting output is
computed as follows:

o(x) = ĥn+1(x) = 8sig(an+1(x)), (32)

which is the required power allocation that the DRL algo-
rithm will use to improve the QoS and also support context
awareness in the IAB network.

B. THE LEARNING POLICY
At the output of the DNN, the DRL strategy adopts the same
learning policy, π , parameterized by θ , i.e., πθt , to guide it in
learning the best power allocation solution, as follows:

πθt : pj→ a∗, (33)

which represents the agents’ behavior by directing it on how
to choose actions, i.e., optimal power, to guide the system
to the best solution of (10). Here, an ε-greedy exploration
approach is used to learn the best action among the candidate
actions output by the DNN and it is assigned as shown in (33).
The greedy action selection defined in (13) is repeated here
for convenience

a∗t = arg max
ai∈ak

Q∗(ht , ai), (34)

where the learned action a∗t has the highest value in the
Q-table used to achieve reward, and transitions to the next
state st+1. After computing y = Q(s, a) of executing action a
under the state s, the packet throughput, which is dependent
on the transmission power, is computed via the Q-learning

method that was proven to converge effectively to an optimal
solution for this problem in [30]:

Q∗(γ ∗, ·) = Rt (γ ∗, ·)

+β t
∑
s∈S

P(st+1|st , at ) max
at+1

Q∗(st+1, at+1), (35)

where P(: | :, :) is the probability measure governing state
transitions, with state-action pairs that update the Q-table at
each time step to approach an optimal Q-value. The agent
then transits to the next state st+1 and updates the correspond-
ing new Q-value as follows:

Q(γ ∗, ·)

← Q(γ ∗, ·)︸ ︷︷ ︸
old value

+αt (Rt (γ ∗, ·)+ β t max
at+1

Q(st+1, at+1)− Q(γ ∗, ·)︸ ︷︷ ︸
temporal difference

)

︸ ︷︷ ︸
learned value

, (36)

where αt ∈ [0, 1] is the learning rate parameter, which
controls the convergence rate of the algorithm. The reward,
Rt (γ ∗, ·), is then awarded to the best action leading to an
optimal,Q(γ ∗, ·). The difference in the Q-value of the learned
action in (36) from the next Q-value,Q(st+1, at+1), is updated
every time slot to give the temporal difference (TD) [36].
As a result, the TD becomes the updating rule, such that the
learned value at the next time step, i.e., the immediate reward,
is defined as follows:

R(γ ∗, ·)+ β t max
a′

Q(s′, a′). (37)

In this analysis, the system learns to provide the best
association and to deliver guaranteed QoS to the associated
UEs. The system relies only on the status of the transmissions
and its buffer status to learn the appropriate action values that
reliably deliver successful transmissions (see constraint C3).
The objective of the proposed algorithm is to operate at equi-
librium and to grant each flow at least the capacity necessary
to meet its QoS requirements without upsetting the cost of
transmission. The proposed algorithm for evaluating the radio
resource management using individual learning is outlined in
Algorithm 1.

When an SBS not able to correctly observe and learn
its environment, information exchange with neighbors help
improve their learning processes. In this context, the neigh-
boring SBSs teach and learn from each others’ experiences
through comprehensive consultation. Locating the nearest
SBS according to the Euclidean distance is because the near-
est neighbor algorithm critically depends on metric spaces.
The proposed nearest neighbor cooperative algorithm is out-
lined in Algorithm 2 below.

C. ALGORITHMIC ANALYSIS AND COMPUTATIONAL
COMPLEXITY OF REACHING THE REWARD
In the case of the proposed DRL strategy, the DNN helps
with the approximation of the expected discounted sum of
future rewards for a given state-action pair. Here, a fixed
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Algorithm 1: Proposed Individual Learning DRL Algo-
rithm

Input: Bandwidth, B; Exploration policy, π ;
Learning rate, αt ; Discount factor, β t

Output: Reward, R(γ ∗, ·)
01: Initialize θt with zero-mean normal distribution
02: Populate the Poisson arrival distribution
03: Set the environmental state st to s0
04: For t = 1 : T do
05: Input sample vector of channel gains to DNN
06: Train DNN model to obtain output vector y
07: Assign a← y
08: Take a greedy action according to (13)
09: Populate state-action pair (st , at )
10: Arbitrarily set Q(st , at ) and solve (10) and

observe reward R(γ ∗, ·)
11: If condition C3 is true then
12: Update system using (36)
13: Else
14: Change to cooperative learning
15: End If
16: Populate current transition probabilities and

observe tuple (st , at , pt ,Rt , st+1)
17: End For

Algorithm 2: Proposed Nearest Neighbor Cooperative
DRL Algorithm

01: Initialize θt with zero-mean normal distribution
02: Initialize number of chosen neighbors, and
03: Construct discrete state space of neighbor SBSs
04: Learn distance metric to the nearest SBS
05: For i = 1 : T do
06: Learn the optimal Q-function using nearest

neighbor regression method
07: Execute steps 06 - 08 to train DNN model
08: Populate state-action pairs (st , at )
09: Draw action at ≈ π(·|S) to solve (10)
10: Observe the reward R(γ ∗, ·) and generate next

state st+1 ≈ pt (·|st , at )
11: If condition C3 is true then
12: Update system using (36)
13: Else
14: Increase transmission power
15: End If
16: Populate current parameters and observe the

tuple (st , at , pt ,Rt , st+1)
17: End For

accuracy, δ, is used for both proposed algorithms. In the
individual learning algorithm that is given in Algorithm 1
above, the RL agent learns from both positive and negative
rewards after executing an action a ∈ A(s). For instance,
after the initialization of parameters, the next step is to train
the DNN model using the input sample of channel gains,
i.e., lines 05 - 07. This is done in order to come up with a set

of possible candidate transmission powers, i.e., the actions.
For this task, an efficient stochastic gradient descent (SGD)
algorithm [35], which derives the gradient by a running aver-
age of its recent magnitude, is considered. The DNN model
is updated in order to scale the target variable. In this case,
it must be noted that when the scale of the target variable is
reduced, the size of the gradient used to update the weights is
also reduced, hence a more stable model and training process
is realized. As discussed in Section IV-A, with the weights of
the DNN represented using probability distributions over pos-
sible values of the observable environmental states, P(w|S),
the uncertainty in the hidden layers allow for the expression
of uncertainty about the outputs [41]. However, it must be
observed that for |aj| � 1, 8sig(aj) ≈ 80,1(aj), as long as
the weights of the network are not regularized. Therefore,
a DNN of this depth can be approximated by polynomial net-
works of depth O(log log(1/δ)), for some fixed accuracy, δ.
Similarly, the ReLU function, σrelu(aj) equals to σ0,1(aj) for
every aj � 1.

1) COMPLEXITY OF THE ACTION SELECTION STRATEGY
With the output of the DNN being the set A of candidate
transmission powers, the Q-learning algorithm is then used to
select the best action, i.e., the optimal power. This is an explo-
ration performed using an ε-greedy policy, where a greedy
action is taken with respect to the estimated Q-function
with probability 1 − ε, and a random one with probabil-
ity ε [36]. A persistent exploration learning policy π is used
to store the information about the relatedness of actions in
the states in a Q-table. This being an undirected exploration,
i.e., it uses only the Q-values, the algorithm has no infor-
mation about action selection on which it bases its deci-
sions. Since the DNN does not directly provide an estimate
of uncertainty, relying on ε-greedy exploration results in a
low sample efficiency because of the undirected exploration.
The action-value function, Q(s, a), is then modeled using
Q-learning and iteratively improved by the DNN by mini-
mizing the loss function [42]. This is the action selection
step in line 08 that implements the exploration rule defin-
ing which state to go to next. In the individual learning
algorithm the agent is only allowed to look for information
local to the state of the SBS. This includes the Q-values
for all actions, a ∈ A(s). As stated in [43], the num-
ber of steps executed is always bounded by an expression
that depends only on the initial and current Q-values. The
complexity of action selection which is well elaborated
in [44] is O

(
N

δ2(1−β t )
log2 N

δ(1−β t )

)
. However, for the pro-

posed DRL algorithm, an effective finite horizon power con-
trol condition is expected to reduce the sample selection
complexity to 1

(1−β t ) . Therefore, the expected time and space

complexity of action selection is O
(

1
δ2(1−β t )

log 1
δ(1−β t )

)
.

2) UPDATING AND REACHING THE REWARD STATE
After the action execution step, state-action pairs are popu-
lated, the Q(st , at ) is set and maintained. The value Q(st , at )
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is then used to approximate the optimal total reward received
when the agent starts in st , executes at and behaves optimally
afterwards. If the congestion condition is true, an update step,
line 12, adjusts Q(st , at ), and if needed, other information
local to the previous state. This means that the one-step look-
ahead valueR(s, a)+β tR(s, a) is more accurate, and therefore
replaces Q(st , at ). An immediate reward R(s, a) ∈ R is then
obtained, and if the agent starts in s ∈ S and executes
actions for which it receives immediate reward Rt at time
step t , then the total reward that the agent receives over its
lifetime for this particular behavior is R(γ ∗, ·) =

∑
∞

t=0 β
tRt .

Finally, the current transition probabilities are populated
into a tuple (st , at , pt ,Rt , st+1) as shown in line 16 of
Algorithm 1. As the agent approaches the reward state,
the number of steps can be exponential in the number of
states. The Q-function value of each state-action pair can
be augmented with an estimate of its uncertainty to guide
exploration, and to achieve faster learning and a higher reward
during learning. For example, if the RL strategy uses a zero-
initialized Q-learning algorithm, i.e., all Q-values are initially
zero, and operates on the reward representation, the first
Q-value that changes is the one for the action leading to
the reward state. For all the other actions, no information
about the topology of the state space is remembered and all
Q-values remain zero. For the resource management purpose
considered in this work, because the Q-learning algorithm
is admissible, the Q-values remain consistent and mono-
tonically decreasing. Due to the monotonic decrease of the
Q-values, the sum of the Q-values also decreases with every
step, but it is bounded from below such that the algorithm
must terminate. Thus, assuming that the state space has no
duplicate actions, and the shortest distance between any two
states is bounded by n − 1, the feasibility result in [46]
follows directly. The complexities of the baseline [24] and
the proposed algorithms are summarized in TABLE 2 below.
Utilizing the invariant and the fact that each of the e different
Q-values is bounded by an expression that depends on reward
distances to derive a bound on t . From TABLE 2 above,
it is evident that the greedy action selection complexity and
learning update complexity of the proposed individual learn-
ing algorithm are less than those of the baseline algorithm.
However, it is clear that as more elements are added to it,
i.e., with DRL, the algorithm becomes more computationally
complex to implement. However, if the system is no longer
able to learn everything from its own observations and experi-
ences, it switches to the nearest neighbor cooperative learning
strategy. The dynamics of the nearest neighbor cooperative
algorithmmay be long in terms of the required operations and

TABLE 2. Computational complexity of proposed algorithms compared
with the baseline.

memory, with the computational complexity increasing with
the increase in the observation space. Locating the nearest
SBS according to the Euclidean distance is because the near-
est neighbor algorithm critically depends on metric spaces.
Thus, e ≤ n2 and the worst-case complexity becomes O(n2),
which is the upper bound on the complexity of the Q-learning
algorithm. Therefore, due to the transfer learning scheme, its
worst-case complexity is quadratic, i.e., O(n2).

V. PERFORMANCE EVALUATION
In this section, the performance results of the proposed algo-
rithms are evaluated via simulations on MATLABTM soft-
ware, running on aworkstation computer with an Intel i5 core,
3.2 GHz processor. The simulation parameters are tabulated
in TABLE 3 below.

TABLE 3. Simulation parameters used for evaluating algorithms.

The performance is evaluated on a 250 × 250 grid urban
environment, with a distance-based path-loss at component
carrier frequency of 28 GHz and component system band-
width of 100 MHz [45]. Here, M = 10 randomly deployed
SBSs share learning information with each other as a way
of controlling their individual congestion levels. The rest of
the Here, the SBS transmission power is set at 20 dBm,
while the UE are transmitting at 18 dBm with shadow fad-
ing (SF) set at 4 dBm. The UE to SBS pathloss is given as:
34.46 +20× log 10(d) + SF, and the Gaussian noise power
as N0+ SF as −174 dBm/Hz + SF. The actions are selected
randomly according to an ε-greedy approach with an explo-
ration decay of 0.995. The optimal actions are learned using
step sizes of αt = 0.4 and αt = 0.6, while the reward
is discounted with β t = 0.98 for better convergence. The
analysis is done in three experiments: (i) congestion rate,
(ii) achievable bit rate, and (iii) user satisfaction. For each
of these experiments, individual learning: where SBSs are
considered as non-coordinated and independent learners; and
cooperative learning: where the SBSs are considered in the
multi-agent domain whose learning performance is not inde-
pendent of other SBSs; are evaluated, and their performance
is compared with baseline DRL algorithms from [24].

A. EXPERIMENT 1 - CONGESTION RATE
Here, channel utilization is used in conjunction with the uti-
lization thresholds in order to identify the level of congestion
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in the serving SBS. The results presented in this section show
the congestion rate of the SBS evaluated as a function of
the number of admitted UEs for the two different learning
schemes, i.e., individual learning and cooperative learning.

1) INDIVIDUAL LEARNING ALGORITHM
The performance of the individual learning algorithm for
evaluating the congestion rate when the learning rate is αt =
0.4 is shown in FIGURE 2 below.

FIGURE 2. Congestion rate at SBS using individual learning with αt = 0.4.

FIGURE 2 above shows that at αt = 0.4, the proposed
algorithm and the baseline algorithm exhibit similar perfor-
mance, with their performances distributed at approximately
8% and 21% for K = 5 and K = 10, respectively. This
means that both algorithms achieve a high level of general-
ization when the number of admitted UEs is low and there
is a 90% probability that the SBS will satisfactorily serve
all the UEs. However, when the number of UEs is 10 ≤
K ≤ 40, the difference between individual learning and
cooperative learning becomes discernible. Their capability
for learning and estimating congestion becomes distinctly
distinguishable.With the individual learning algorithms, both
conventional and proposed learning schemes show similar
weaknesses in avoiding congestion.

The performance of the individual learning algorithm for
evaluating the congestion rate when the learning rate is
increased to αt = 0.6 is shown in FIGURE 3 below.

FIGURE 3 above shows the performance evaluation of
the congestion rate at learning rate αt = 0.6 for individual
learning. Here, the performance of both the proposed indi-
vidual learning algorithm and the baseline algorithm is the
same for 5 ≤ K ≤ 25. In as much as the proposed scheme
follows the same performance trajectory with the baseline
algorithm, there is 2.2% better performance than the baseline
algorithm, and 1.2% better than when the learning rate was
αt = 0.4. At K = 40, the performance is distributed at
approximately 93.2%, which is 3.5% better performance than
at αt = 0.4. This means that with αt = 0.6, the SBS has

FIGURE 3. Congestion rate at SBS using individual learning with αt = 0.6.

a 3.5% better capability of satisfying all the admitted UEs
than when αt = 0.4. Thus, the choice of the learning rate
has an effect on network congestion, as was determined by
applying different magnitudes of the learning rate in [30].
However, in as much as increasing the learning rate appears
to give better statistical performance, it introduces instability
in the learning performance, as can be observed at K = 30
where the performance of the proposed algorithm overrides
the baseline instead of the opposite. Because of the presence
of the DNN, a higher learning rate results in learning a set of
sub-optimal weights too quickly - hence an unstable training
process. This shows that by changing the learning rate, there
is a trade-off between better performance and stability of the
DRL algorithm.

2) NEAREST NEIGHBOR COOPERATIVE ALGORITHM
In this case, since the selected nearest neighbor knows the
trajectory leading to the reward, it is then treated as a men-
tor that performs transfer learning to this tagged SBS. This
assumption is actually consistent with the view of RL as a
form of automatic programming [36]. Therefore, in this part,
the SBS is assumed to be learning with the assistance of
the nearest neighbor for congestion control. The influence
of the nearest neighbor was investigated and verified in [24]
and [30].

In FIGURE 4 above, the effect of using the cooperative
algorithm is noticeable as the performance of the proposed
algorithm begins to improve with an increasing number of
UEs. The performance of the proposed cooperative algorithm
is distributed approximately at 7.1% at K = 5, which is 2.2%
better than the baseline algorithm. However, in the range
7 < K < 17, its performance becomes poor, only to retain
superiority at K < 17. The effect of increasing the learning
rate, αt , under the cooperative framework is investigated in
FIGURE 5 below.
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FIGURE 4. Congestion rate with SBS cooperating with nearest neighbour
at learning rate αt = 0.4.

FIGURE 5. Congestion rate with SBS cooperating with nearest neighbour
at learning rate αt = 0.6.

The performance of the cooperative algorithm in
FIGURE 5 above exhibits similar behavior to that observed
in FIGURE 4. The increase in learning rate from αt = 0.4
to αt = 0.6 does not have much effect, which means that
the algorithm is insensitive to a change in learning rate. This
feature is attractive for future IAB networks where nodes
will have the self-reconfiguration capabilities to adjust their
parameters in changing environmental conditions.

B. EXPERIMENT 2: THROUGHPUT - ACHIEVABLE BIT RATE
The extension of themodel from congestion rate to achievable
bit rate is crucial in order to monitor the throughput perfor-
mance at different levels of congestion. Thus, in this section,
the performance of the proposed algorithms in terms of the
achievable bit rate is evaluated. The aim was to maximize
the achievable bit rate under two constraints, C1 and C2.
This means that the central idea is to is to enforce admission
control based on the satisfaction rate, �(γ ∗, [0,T ]) ≈ σ/Ts.

1) INDIVIDUAL LEARNING ALGORITHM
The performance of the individual learning algorithm on
throughput is evaluated with a learning rate of αt = 0.4 in
FIGURE 6 below.

FIGURE 6. Achievable bit rate at SBS using individual learning with a
learning rate αt = 0.4.

In FIGURE 6, the throughput performance is evaluated in
terms of the achievable bit rate as a function of an increasing
number of admitted UEs. With αt = 0.4, the proposed algo-
rithm outperforms the baseline by 46.79% atK = 5; however,
in the range 20 ≥ K ≥ 40, the difference is about 22.50%.
It can be observed that the throughput performance of the
proposed individual learning algorithm is superior to that of
the baseline algorithm. This is evidenced by the fact that the
amount of throughput that the proposed algorithm achieves in
the range 20 ≥ K ≥ 40, i.e., 1.35 Mbps, is what the baseline
achieves with K = 5. The throughput performance of both
methods can be seen to stabilise in the range 20 ≥ K ≥ 40.
This is because the solution methods aim to keep satisfying
the QoS requirements of all UEs until the SBS can no longer
admit more UEs. It was observed from the results in [30] that
as the number of UEs increases above 40 for the same model,
the throughput would significantly drop especially for the
cooperative learning scheme, thus indicating a requirement
for a change in the bandwidth split or migration of UEs.

In order to further evaluate the performance of this self-
ish behavior, where SBSs try to increase their throughput
independently, the throughput performance for the individ-
ual learning algorithm is evaluated with a learning rate of
αt = 0.6 as shown in FIGURE 7 below.

In FIGURE 7 above, the performance of the individual
learning algorithm is evaluated for αt = 0.6. At K = 5,
the performance of the proposed algorithm is 46.55% higher,
and 22.50% when K ≥ 20. Similar to Fig. 6, a throughput
of 1.35 Mbps is achieved between the 20 ≥ K ≥ 40 range,
which is the rate achieved by the baseline algorithm atK = 5.
There is a 0.0113 Mbps decline in the throughput observed
after the learning rate is increased, and there is only a 0.24%
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FIGURE 7. Achievable bit rate at SBS using individual learning with
αt = 0.6.

difference separating both learning rates at K = 5. From this,
it can be concluded that there is not much significant sensitiv-
ity to the change in learning rate for the individual learning
algorithm. However, the consistent throughput performance
in the range 20 ≥ K ≥ 40 for both learning rates means
that the individual learning algorithm is not affected by the
congestion rate at the SBS.

2) NEAREST NEIGHBOR COOPERATIVE ALGORITHM
In this part, cooperation between SBSs is employed in order
to significantly improve the overall system throughput. The
sharing of learned policies in the form of value functions with
the nearest neighbor is imposed on the set of states and the
system variables defined in the state space. The throughput
performance in terms of the achievable bit rate is evaluated
using the cooperative algorithm, beginning with αt = 0.4,
as shown in FIGURE. 8 below.

FIGURE 8. Achievable bit rate at SBS cooperative with nearest neighbor
at learning rate αt = 0.4.

From FIGURE 8 above, when K = 5 the proposed
cooperative algorithm displays a 46.56% superiority over the
baseline algorithm, with the difference decreasing to 21.52%
at K = 10. The achievable bitrate decreases steadily, main-
taining almost the same 21.52% difference from the baseline
algorithm until K = 40. The throughput performance is
evaluated for αt = 0.6 in FIGURE 9 below.

FIGURE 9. Achievable bit rate at SBS cooperating with nearest neighbor
at learning rate αt = 0.6.

In FIGURE 9 above, the learning rate αt = 0.6 performs
43.84% better than the baseline algorithm at K = 5. There
is a noticeable decline of 2.72% in the difference from when
αt = 0.4. With the increase in the number of UEs, the per-
formance continues to decline in a noticeably smooth pattern.
This means that the cooperative algorithm is sensitive to an
increase in the learning rate and an increasing number of
UEs on the access network. It can be concluded that as the
number of UEs increases, at larger values of αt : αt → β t ,
the cooperative algorithm prohibits better throughput. As a
result, the performance of the nearest neighbor cooperative
algorithm is sensitive to the change in the learning rate. These
results mean that the throughput performance of the nearest
neighbor cooperative algorithm is affected by the conges-
tion rate. This claim is justified by the behavior shown in
FIGURE 4 at K = 17, and in FIGURE 5 at K = 13.

C. EXPERIMENT 3: QUALITY OF EXPERIENCE
After the evaluation of the achievable throughput, the evalua-
tion of user satisfaction is used to qualify the users’ perception
of the service, that is, the QoE. This is a quality metric
that is measured using the mean opinion score (MOS). The
system-level parameters related to the throughput discussed
above, i.e., packet losses and the delay are used to measure
the QoE, using the MOS scale of 1 (worst) - 5 (best). In this
experiment, the system utilization is used in conjunction with
the throughput to measure the overall QoE of the admitted
users. The QoE, a popular factor for measuring the success
of multimedia services, is an indicator of user experience and
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user satisfaction [47]. The satisfaction of users is computed
using the regression of the relationship between the required
QoS and the available transmission time, taking into account
the congestion rate. It is then measured based on the MOP,
with 5 being the maximum score.

1) INDIVIDUAL LEARNING ALGORITHM
User satisfaction is evaluated using the individual learning
algorithm for αt = 0.4 and the result is shown in FIGURE. 10
below.

FIGURE 10. UE satisfaction at SBS using individual learning with αt = 0.4.

As observed from the results in FIGURE 10 and
FIGURE 11, the satisfaction degree of UEs declines uni-
formly between 5 ≤ K ≤ 20, and tends to exhibit consistency
for the remainder of the range. It was observed that there is
a significant sensitivity to the change in learning rate for the
individual learning scheme. With a learning rate of αt = 0.4,
the satisfaction of UEs is as high as 4.5 at K = 5, and
distributed around 4.1 for the range 20 ≤ K ≤ 40. The
learning rate is changed to αt = 0.6 in FIGURE 11 below.

FIGURE 11. UE satisfaction at SBS using individual learning with αt = 0.6.

When αt = 0.6, at K = 5 the satisfaction degree is
distributed at approximately 4.8, and distributed at approx-
imately 4.1 for the range 20 ≤ K ≤ 40.

2) NEAREST NEIGHBOR COOPERATIVE LEARNING
ALGORITHM
In this part, the performance of the nearest neighbor coopera-
tive algorithm is evaluated in terms of the satisfaction degree
with αt = 0.4; the results are shown in FIGURE 12 below.

FIGURE 12. UE satisfaction at SBS cooperating with nearest neighbor at
learning rate αt = 0.4.

The evaluation of the nearest neighbor cooperative algo-
rithm for αt = 0.6 is shown in FIGURE 13 below.

FIGURE 13. UE satisfaction at SBS cooperating with nearest neighbor at
learning rate αt = 0.6.

When exploiting the nearest neighbor cooperative learn-
ing algorithm, the good capability of offering better QoE
similar to the individual learning algorithm means that user
satisfaction performance is not sensitive to either the learning
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scheme or a change in the learning rate. These results are in
agreement with recent findings and supports the results and
analysis in [48]. Even though a discount factor that is closer
to 1 requires more time to converge, better performance is
guaranteed, which is the objective of this work. Another rea-
son for using a higher discounting factor is the advantage that
it has in congestion control. Since congestion is incremental,
a higher discount on the rewards maximizes generalization
and also avoids over-fitting of earlier learning.

VI. CONCLUSION
In this article, a radio resource management solution that
aims to avoid congestion on the access side of IAB networks
was proposed. In order to provide satisfactory RA for users,
the congestion rate of an IAB node is monitored by introduc-
ing a transmission buffer. Because of the power consumption
issues in the RA framework, the problem was converted
into a constrained problem using MDPs and dynamic power
management. A DRL algorithm was then proposed, where a
DNN was trained for optimal power allocation by initializing
a power control parameter, θt , with zero-mean normal distri-
bution. The DRL algorithm then adopted its output to learn a
policy, π , parameterized by θt , to achieve logical allocation
of resources by placing more emphasis on congestion control
and user satisfaction. The performance of the proposed DRL
algorithm was evaluated using two learning schemes - indi-
vidual learning and nearest neighbor cooperative learning.
It was found that the nearest neighbor cooperative learning
algorithm is suitable for IAB networks because its through-
put has good correlation with the congestion rate. From the
algorithmic computational complexity analysis, it is evident
that the greedy action selection and learning update com-
plexities of the proposed individual learning algorithm are
less compared to the baselineQ-learning algorithm. However,
the learning update computational complexity, and conse-
quently the overall complexity of the cooperative learning
scheme is the same as that of the baseline algorithm. Power
consumption analysis and energy efficiency performance
evaluation is considered for future work.
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