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Summary 
 
Malaria parasites cause human disease through completing a complicated life cycle within 

both human and mosquito hosts. These organisms are also characterized by numerous 

molecular eccentricities that make them of immediate biological interest to study. However, 

the complexity of the parasite life cycle and the composition of its genes and proteins makes 

studying gene regulation in Plasmodium falciparum parasites a multifaceted problem and 

challenging to resolve.  

 

This doctoral thesis presents the following approaches to study gene regulation using an array 

of different tools to construct Gene Regulatory Networks (GRNs) for various phases of P. 

falciparum parasite development. 1) We investigated gene regulation of the intraerythrocytic 

phases of the parasite life cycle, the asexual proliferative phase in which causes the symptoms 

of malaria as well as the sexual differentiative phase that forms transmissive gametocytes. 

Initially we investigated the two developmental phases in isolation using time course-based 

experiments and analysing the data with Dynamic Bayesian Network (DBN) tools. We studied 

asexual gene regulation using a strategic cell cycle arrest and re-entry experiment, whereby 

regulatory candidate genes were inferred based on re-entry expression patterns. Application 

of DBN time course analysis yielded a calcium signalling cascade along with multiple 

regulatory elements. This approach was expanded to study the sexual development phase as 

well, using a transcriptomics dataset capturing the daily maturation of gametocytes, which 

focused on the role of transcription factors. The application of DBN analysis to gametocyte 

microarray data produced insights into the potential regulatory roles of key ApiAP2 

transcription factors which presented with a cascade-like expression as well as putative 

repressor ApiAP2’s which potentially drive the active repression of proliferation-associated  

transcription. 

 

2) The two developmental phases were also evaluated collectively using RNA-seq datasets 

sourced from prior research as well as a newly generated gametocyte maturation dataset, 

capturing all stages of gametocyte development. Integration of data and constructing of a co-

expression network lead to a gametocyte associated subnetwork which highlighted potentially 

novel and significant regulators of gametocyte maturation. The co-expression network itself 

also constitutes a solid set of curated, cross-dataset normalized genes that can be further 

used to predict stage-specificity of transcripts in asexual stages of development. Investigations 

into long non-coding RNA (lncRNA) and their role during gametocyte development was also 

a key focus of the study. Novel lncRNA were uncovered for gametocyte stages and co-

expression network analysis has highlighted many targets of the lncRNA. Investigation into 
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the role of anti-sense RNA (asRNA) has yielded 9 clusters illustrating the potential for 

numerous genes (n=285) to be silenced/controlled by their own asRNA.  

 

3) The analysis was further expanded through the construction of a large-scale supervised 

gene regulatory network using advance ensemble machine learning techniques 

(GRNBoost2), which evaluated 124 regulatory genes against a total of 5163 target genes. 

This approached showed great improvements over the previous strategies.  This supervised 

approach was packaged in a user-friendly web application called MALBoost. This application 

allows user to submit their own transcriptomic data and regulator gene list to perform a choice 

of two analyses, GRNBoost2 or GENIE3. This approach removes the coding element from the 

analysis and makes this level of GRN based work available to non-computational biologists.    

 

This thesis presents an in-depth analysis using high-level machine learning and statistical 

analysis applied to teasing apart the biological significance of transcriptional data. This 

contributes to our understanding of transcriptional regulation in sexual differentiation and 

promotes the use of machine learning algorithms in better understanding P. falciparum 

transcriptomes. 
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Chapter 1 
 

Literature review 

 

1.1 Malaria: a global disease burden 
 

Malaria devastates the global health and economy annually, causing an estimated total of 229 

million cases and 409 000 mortalities during 2019 alone1. With global case numbers rising 

from 217 million cases in 2014 to 229 mil, there is cause for alarm. African countries are the 

most burdened by this disease accounting for an estimated 215 million cases in 2019. Mortality 

rates are also highest amongst African countries, with ~94% of mortalities from this region in 

20191. Most disturbing of all is that children under the age of 5 account for ~67% of the deaths. 

These numbers also account for millions of cases that have been averted through efforts by 

the World Health Organization with programs such as Malaria Eradication Agenda (malERA) 

and the Roll Back Malaria initiative1–3. Together these agencies aim to reduce malaria mortality 

and case load by 90% in 2030 by tackling malaria transmission on several fronts4. 

 

The primary method for controlling malaria transmission is targeting the obligate intermediate 

mosquito vector. The malaria parasite is carried to humans by the females of multiple 

Anopheles mosquito species, making vector control, chiefly through the use of insecticides, 

an integral part of a successful elimination strategy. Previous efforts almost solely focused on 

indoor residual spraying and formed the primary focus of the Global Malaria Eradication 

Program (GMEP, 1955–1969). However, the current tool kit for targeting vector transmission 

focuses on co-implementation of indoor residual spraying and the use of long-lasting 

insecticide-treated bed nets (LLINs)4. This strategy forms the basis of combatting widespread 

resistance of the Anopheles vectors to the four major classes of commercially available 

insecticides: pyrethroids, organochlorides, organophosphates and carbamates5. In addition, 

partnerships with endemic countries aim to increase ecological surveillance of mosquito 

breeding areas and general insecticide resistance4. 

 

Furthermore, malaria elimination also requires targeting the parasites that cause the disease. 

Currently, there is a critical need for new approved mechanisms (chemotherapies and 

vaccines) that combat critical attributes of the parasite including the development of rapid 

resistance to monotherapies and insidious evasion of the human immune response. The first 

malaria vaccine approved for use by the WHO, the RTS, S vaccine uses a truncated form of 

an essential parasite antigen, the circumsporozoite protein (CSP) coupled to adjuvants to 
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produce an immune response protecting against future infections. This vaccine offers partial 

protection against malaria in African children, preventing an estimated 40% of malaria cases 

in three African countries6. Further optimization of this promising vaccine candidate has shown 

promise, with the second iteration of this vaccine, R21, showing around 77% efficacy in a 

small-scale study in Burkina Faso2. However, as the vaccine is not completely effective and 

has multiple challenges for mass-distribution i.e. storage, accessibility, compliance with 4-

dose regimen, treatment with anti-malaria drugs remains a mainstay of intervention against 

malaria infection.  

 

The most widely used antimalarial chemotherapies, quinolone and artemisinin derivates, 

arose from ethnobotanic knowledge dating back hundreds of years3. These medicines target 

essential functions of the parasite. Chloroquine and quinolone derivatives prevent the parasite 

from sequestering toxic heme moieties that form through the parasite’s digestion of human 

haemoglobin, while artemisinin is activated through the release of ferric iron during this same 

process, enabling the drug to alkylate numerous parasite proteins, causing acute toxicity to 

the parasite4. A third compound class targeting folate biosynthesis in the parasite is comprised 

of sulphadoxine and pyrimethamine and are typically paired with an artemisinin-derived 

partner drug for treatment. However, for all of these compound classes, encroaching drug 

resistance has been reported first in Southeast Asia and recently in Africa, necessitating rapid 

development of novel antimalarial drugs7.  

 

To combat the virulent spread of malaria drug resistance, researchers aim to provide a 

continual pipeline of antimalarial drugs in development, which has resulted in several 

frontrunner compounds with novel targets entering clinical development i.e. KAF156, 

DSM256, MMV253 and MMV0485 among others. These compounds represent efforts to 

adhere to guidelines formulated by the Medicines for Malaria Venture (MMV, www.mmv.org) 

to produce long lasting, effective treatments against malaria that can produce single dose 

cures, prevent transmission of the parasite and/or combat resistance. These leaps in progress 

against fighting malaria were also enabled by uncovering key elements in understanding the 

malaria parasite’s complicated biology, a process which is still largely incomplete. 

 

1.2 Malaria parasites and their complex life cycle 
 

Malaria in humans is cause by five species of Plasmodium parasite, P. falciparum, P. vivax, 

P. ovale, P. malariae and P. knowlesi of which P. falciparum accounts for the most severe 

form of the disease1. It’s also the most widespread form with the highest number of infections 
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and mortalities attributed to P. falciparum globally. P. falciparum is the focus of this study and 

will be discussed in more detail. 

 

P. falciparum infections in humans are initiated by the introduction of sporozoites as the result 

of a female Anopheles mosquito blood meal, where the parasites are injected through the skin 

and make their way to the liver through the blood stream of the human host6. The sporozoites 

will transiently pass-through hepatocytes in the liver through the formation of non-replicative 

vacuoles before finally productively invading the cells. A parasitophorous vacuole houses the 

sporozoite in the hepatocyte while it divides asexually into a hepatic schizont and bursts open 

to release invasive merozoites for initiation of the erythrocytic invasive cycle (Figure 1.1).  
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Figure 1.1: Plasmodium falciparum life cycle in human host.  
The parasite life cycle is a complex system ranging from sexual development in the mosquito vector to 
three human host phases. During the human host phases the parasite starts its development in liver 
hepatocytes, then moving on to erythrocytes where parasites proliferate over a ~48hr period into 
schizonts, which after bursting releases ring parasites to repeat the process. A small subset of ring 
parasites commits to sexual development which occurs in the bone marrow and spleen and has five 
distinct stages. Gametocytes develop either as male or female. These gametocytes when mature re-
enter circulation and find their way to the mosquito vector via a blood meal. Produced using Servier 
medical art under creative commons license, provided with permission by Dr. Riëtte van Biljon. 
 
Merozoites invade erythrocytes through apical organelles, encasing themselves in a 

parasitophorous vacuolar membrane and initiating the intraerythrocytic developmental cycle 

(IDC). Once invaded, the parasite enters the relatively inert morphological ring-stage for its 

first 15 hours. The parasite then undergoes a substantial increase in metabolic activity as it 

enters the trophozoite stage. Trophozoites digest the haemoglobin of their host cells, 

sequestering toxic heme moieties into hemozoin crystals visible in the parasite and increasing 

in size and exporting proteins that permeabilise the erythrocyte membrane to metabolites 

essential to the parasite’s survival8. In the final hours of the 48 hour IDC, the parasite enters 
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the schizont stage, during which the parasite replicates its DNA and divides into 20-30 

daughter merozoites7, ready to reinitiate the cycle. 

 

A small proportion (<10%) of asexual parasites stochastically commit to sexual development 

in each cycle, resulting in a prolonged gametocyte maturation process of 10-12 days in P. 

falciparum. The parasite progresses through five morphological stages of gametocyte 

development to produce sexually dimorphic, mature gametocytes that can transmit to the 

Anopheles mosquito vector9,10. This commitment event occurs either within the ring-stage, that 

then develop into stage I gametocytes (same-cycle conversion) or in schizonts, that develop 

into stage I gametocytes after the merozoites reinvade (next cycle conversion)11. Stage I 

gametocytes are morphologically indistinguishable from trophozoites but express numerous 

sexual-stage specific surface proteins12 and in vivo are sequestered in the bone marrow of the 

human host13. From stage II of gametocyte development, the parasite begin to elongate 

through the construction of a subpellicular membrane network14, aiding in keeping the parasite 

sequestered in the bone marrow. The early stages of gametocytes also continue to digest 

haemoglobin in the red blood cell, but hemozoin crystals are more diffuse than those visible 

in asexual trophozoites (Figure 1.1). The male and female gametocytes also become 

distinguishable as the female have more dense hemozoin crystals compared to the males with 

hemozoin crystals scattered through their cytoplasm15. Stage IV gametocytes are the most 

elongated and pointed, with females clearly distinguishable by the presence of osmiophilic 

bodies and the parasite ceases haemoglobin digestion at this stage16. As the parasite matures 

into stage V gametocytes, the subpellicular microtubular network depolymerizes, resulting in 

sausage-shaped gametocytes with rounded ends. In vivo, stage V gametocytes are the only 

stage of sexual development that circulates in the bloodstream and after a few days become 

infectious to feeding Anopheles mosquitoes17. 

 

Once gametocytes are taken up into the mosquito, they rapidly activate to produce 

microgametes through exflagellation of male gametocytes and macrogametes from female 

gametocytes18. Microgametes and macrogametes fuse into a zygote, which develops into a 

motile ookinete that migrates through the mosquito midgut before productively invading a 

midgut cell. The ookinete forms an immotile oocyst containing numerous sporozoites that 

burst out and travel to the mosquito’s salivary glands, ready to reinitiate the infectious cycle19. 
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1.3 Transcriptional regulation in P. falciparum 
 

The complicated life cycle development of P. falciparum is underpinned by a highly regulated 

cascade of transcription. The transcriptional profile of the IDC is particularly illustrative of the 

fine regulation the parasite can implement20. During this development phase, nearly all the 

parasite transcripts are expressed in a stage-specific manner. Gametocyte development 

characterized by the expression of a number of gametocyte specific transcripts21 and sex 

specific transcripts22. General transcriptional control elements for P. falciparum remain 

conserved with that of most eukaryotes, with most members of the transcription initiation 

complex identified23. However, cis-acting promoter-proximal elements, i.e. TATA-boxes 

remain challenging to identify in the AT-rich (~80%) P. falciparum genome despite the 

availability of numerous transcription start site (TSS) datasets24–26.  

 

Many genes have multiple TSS sites, which are preferentially used at different points in the 

TSS. These TSS differences were associated with a marked difference in gene expression 

level, which points to chromatin availability as a major regulator of promoter strength24. 

Discrepancies for mean differences were noted ranging from as little as 7 bp to 496 bp which 

was attributed to thresholding difference between studies25. Approximately 81% of TSS blocks 

occur within 1000 bp of the start codon and a further 65% of these occur less than 500 bp of 

CDS24. Leaderless transcription (lacking a 5’UTR) with TSS within exons for both single-exon 

and multi-exon genes were also observed. This produces a complex view of transcription in 

P. falciparum, were the TSS may vary greatly for certain genes and often lack 5’UTRs 

complicating the data further. Studies on TSS have also found a convincing bias for a TA 

dinucleotide (as is usually found in eukaryotes at the +1 position) at the TSS during asexual 

development, with the presence of two GC-rich regions approximately 150 bp and 210 bp 

downstream of the TSS24.  

 

Chromatin structure and accessibility has been shown to be a major determinant of overall 

gene expression in P. falciparum27,28. Evaluation of chromatin structure and accessibility for 

regulatory events, were uncovered for of genes. The temporal accessibility of genes to their 

nearest local regulatory elements correlates for the majority (~85%) of genes29. This does not 

exclude the existence of distant regulatory enhancer regions, however it seems likely that the 

majority of genes are regulated by their nearest set of regulatory elements29. In fact distant 

regulatory sequences identified were mainly relegated to studies in centromeres, ribosomal 

DNA loci and subtelomeric regions29,30. Epigenetic factors also act as chromatin modellers 

and interpret the chromatin environment to regulate the concerted expression of genes. Open 

and closed chromatin environments regulate access of transcription factors (TF) to gene 
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promoter regions which allow these trans-factors to act as transcriptional repressors or 

activators31. The combined evaluation of nucleosomal landscape with activating or repressive 

histone-tail modifications were able to predict overall transcript levels in the P. falciparum 

transcriptome to an accuracy of ~80%29, showing that the chromatin epigenetic landscape is 

a critical aspect of gene regulation in the parasite. The resultant landscape is exceptionally 

open in the IDC, largely contributed by the absence of the H1 linker histone32 and an 

abundance of activating epigenetic marks33. During this state, transcription factor binding sites 

(TFBS) are exposed and transcription can be initiated (Figure 1.2). These same types of in-

depth analyses have not been performed on the sexual stages of the blood phase of malaria 

infection, and it is largely unknown how the chromatin landscape changes in gametocytes to 

allow for its differentiated transcriptome. 

 

The P. falciparum genome contains a relatively small (~1% of total genes) cadre of putatively 

predicted sequence-specific transcription factors mostly consisting of helix-turn-helix and zinc-

finger domain containing proteins34. The largest and most extensively investigated family of 

TFs in P. falciparum parasites comprises 27 proteins containing Apicomplexan AP2 (ApiAP2) 

DNA binding domains, homologous to the Apetala2/Environmental Response Factors 

(AP2/ERF) family of proteins found in Arabidopsis thaliana. The ApiAP2 proteins that have 

been investigated for their effect on transcription so far have been found to be either 

repressive35 or activating in nature36–39 (Figure 1.2). Of the 27 ApiAP2’s, 21 have been paired 

with a specific DNA motif in vitro and in the rodent malaria species, most ApiAP2 proteins 

were associated with the passage of the parasite through key points in its lifecycle, most of 

these occurring in the mosquito40. However, in the human malaria parasite P. falciparum, one 

factor has been shown to be essential for completion of the IDC, AP2-I41, AP2-G has also 

been highlighted as the key gatekeeper to sexual commitment42,43, while loss of the repressive 

transcription factor AP2-G2 prevents the completion of gametocyte maturation and AP2-HS 

specifically regulates the parasite’s heat shock response, suggesting that at least some of 

these proteins have specific roles in regulating transcription in the parasite35,44,45. In addition, 

some of these proteins SIP2 and AP2-Tel have been shown to specifically associate with 

heterochromatin or telomeres and do not have a marked influence on gene expression31,46. 

While evidence from DNA pull-downs with specific DNA sequence implicate the ApiAP2 family 

of transcriptions factors as the only sequence-specific binding factors in the parasite29, at least 

one other transcription factor (MYB1) has been shown to bind specific DNA sequences in vitro 

and affect the ability of the P. falciparum to progress through the IDC47. 
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Figure 1.2: Transcription and regulation in P. falciparum.  
Inactive heterochromatin state reduces access to promoter regions, thus preventing transcription. 
Active euchromatin provides access of promoters for TFs which may either lead to activation or 
repression of transcripts. During activation the TF recruit TF complex proteins and RNA Pol II which 
initiates transcription. TA: dinucleotide TSS. GCxn: GC-rich regions. TFBS: transcription factor binding 
site, TF: transcription factor. 
 

While transcriptional regulation is a major factor in regulation of gene expression in P. 

falciparum parasites, it has also been shown that the parasite employs post-transcriptional 

controls such as alternative splicing, post-transcriptional modifications, mRNA stabilization48,49 

and mRNA decay50. However, RNA interference is presumed to be missing as no known 

homologue for DICER exists in the parasite genome51. Capping of pre-mRNA, polyadenylation 

and splicing occur in the parasite nucleus where alternative splicing may produce transcripts 

for translational repression22. Alternative splicing also plays a role in regulating variant gene 

switching, which is important for immune evasion and isoform production. The transcripts 

exported from the nucleus can also be subject to further regulation instead of being translated. 

Some transcripts are stabilized and translationally repressed by large protein complexes such 

as DOZI-CITH complex and the pumillo-family (Puf) proteins52,53, with specific relevance in 

female gametocyte development in preparation for gametogenesis. Other transcripts which 

are not protected by stabilizing proteins are quickly degraded. This process occurs through 

the activity of ribonucleases and decapping enzymes (DCP1/2) degrade mRNA in a 5’-3’ 

direction. Alternatively, 3’-5’ degradation is mediated by the CCR4-NOT complex and CCR4-
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NOT associated factor 1 (CAF1), which mediates deadenylation54 and transcript degradation 

is performed by the exosome.  

 

Post-translational control can also affect transcriptional regulation, predominantly as a result 

of the modification of histones. These post-translational modifications (PTMs) are primarily the 

addition and removal of acetyl and methyl groups32. Acetyl modifications are deposited by 

histone acetyl transferases (HATs) and its removal is facilitated by histone deacetylases 

(HDACs), with bromodomain-containing proteins which often act as readers of these 

modifications. Methylation modifications to histones can result in mono-, di- and tri-methylation 

of lysine residues and mono-, or di-methylated arginine residues55. Histone lysine 

methyltransferases such as SETs deposit methyl groups on lysine residues, while histone 

arginine methyltransferases such as HRMTs modify arginine residues56. Demethylases for 

each of these groups are responsible for the removal of methyl groups. The contribution of 

histone PTMs to gene regulation is clearly established and associated with stage-specific 

usage of particular PTMs in a dynamic fashion57–60. This contributes to the overall euchromatic 

nature of asexual parasites and a repressive, more heterochromatic environment that 

characterises gametocyte differentiation57–60. 

 

In addition to the above, noncoding RNA (ncRNA) are transcribed RNAs that do not yield 

protein products but are considered to be an essential component of the transcriptome42. A 

specific group of ncRNAs which are interesting in P. falciparum, are long ncRNA (lncRNA). 

These lncRNA play specific roles in gene silencing of the strongly regulated var gene family 

in IDC parasites, which only allow for the expression of a single exported protein in a specific 

parasite43,61. These subtelomeric var genes contain a variable exon 1 and a conserved exon 

2 and two lncRNA is said to interfere with their expression. These lncRNA are transcribed 

from a bidirectional promoter housed between the two exons which create a lncRNA that is 

antisense (complimentary) to the gene and a sense strand which runs along the 2nd exon 

(Figure 1.3A). Both these lncRNAs are capped but not polyadenylated and are transcribed by 

RNA Pol II42. This complex formation leads to gene silencing of var genes, particularly those 

located near the telomeres40,61. The full mechanism remains to be resolved, however, there is 

a proposal that ncRNAs can lead to site-specific histone modifications42. Two such 

modifications are known to silence var genes: H3K36me3 and H3K9me62,63. A SET protein 

(PfSETvs), which performs the H3K36me3 modification, has been shown to be recruited to 

var genes through Pol II62. This creates the possibility that lncRNAs could be indirectly 

recruiting histone modifiers in gene silencing for these virulence genes42,63. This is bolstered 

by the role of lncRNA-mediated nucleosome positioning in other organisms42. Members of the 

var gene family which are internally located on chromosomes, appear to be activated by their 
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intron-derived lncRNA counterparts, illustrating the complexity of lncRNA in regulation of 

genes64.  

 

 
Figure 1.3: Proposed mechanisms of lncRNA gene silencing in var genes for P. falciparum.  
A) Two lncRNA are transcribed at a bidirectional promoter situated between exon 1 and 2 by RNA Pol 
II. One antisense strand (complementary to the transcript) and one sense strand (running along the 
gene) is transcribed. B) lncRNA and RNA Pol II complex leads to the potential recruitment of histone 
modifiers such as PfSETvs. Histone modifications known to silence var genes are H3K36me3 and 
H3K9me3. Adapted from42. 
 

In addition to lncRNA residing in the introns of genes, regulation of specific genes by antisense 

RNA (asRNA) have also been observed. One such mechanism affects gametocyte 

development protein 1 (GDV1), asRNA silences gdv1 and prohibits sexual development of the 

parasite in human host stages45. GDV1 plays an essential role in evicting a repressor protein 

heterochromatin protein 1 (HP1), which continuously silences AP2-G, a transcription factor 

responsible for initiating gametocyte development during ring-stage parasites. With the 

presence of GDV1, HP1 is no longer bound upstream of AP2-G and the AP2-G product can 

initiate sexual differentiation (Figure 1.4). The negative regulation for GDV1 asRNA could 

occur at the level of mRNA transcription, stability or translation42,45. It’s clear from these data 

that ncRNA can play an essential role in gene regulation, though the research on these 

mechanisms in P. falciparum is still extremely sparse.  
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Figure 1.4: Gdv1, HP1 silencing interplay of AP2-g.  
Gdv1 asRNA serves to silence gdv1 which in turn cannot evict HP1 from the upstream location of AP2-
G. Adapted from42. 
 

1.4 Gene Regulatory Networks: A general introduction and use case in transcriptomics 
 

Gene Regulatory Networks (GRNs) describe the relationship between regulatory genes and 

their respective target genes65,66. GRNs are useful to characterise the regulatory genes or 

control agents required during developmental processes. In its simplest form, a GRN connects 

a “regulatory” gene (also referred to as candidate gene) to its target gene, capturing the 

effector vs. affected relationship known as edges (Figure 1.5). Several methods for modelling 

or simulating these relationships exist that all use high-throughput experimental data. The use 

of expression profiles, genomic sequences and transcription factor binding arrays provide 

essential data for such modelling67. Several methods are available and some of the most 

common approaches and methods of particular interest to this study include correlation 

networks (CNs) and mutual information networks (MI), Bayesian networks (BNs) and dynamic 

Bayesian networks (DBNs), Gaussian Graphical Models (GGM), Ensemble learning methods 

such as Random Forest trees (RFs) and Gradient Boosting Machines (GBMs), and Graph 

Neural Networks (GNNs) (Figure 1.5). Each of these will be briefly introduced below. 
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Figure 1.5: Gene Regulatory Networks, a general overview.  
GRNs describe the relationships between two nodes (Reg node: regulatory gene or Tar node: target 
gene) in terms of edges (the value that explains the relationship). These edges may be derived in a 
number of ways, the most commonly used methods are, correlation networks (also known as co-
expression networks) and mutual information networks (usually a knowledge-based relationship), 
Bayesian networks such as dynamic Bayesian networks, Gaussian Graphical Models, Ensemble 
learning methods such as Random Forest trees and Graph Neural Networks. This collection of 
relationship explanations constitutes the overall GRN. 
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1.4.1 Correlation networks (CN) 

CNs are achieved by calculating correlation coefficients via a pairwise assessment of genes 

in relation to all other genes68. From these relationships, a full gene interaction network is 

constructed with the correlation values between genes used to describe the edges of the 

network. Generally, a form of module definition is then applied such as hierarchical clustering 

(Figure 1.6), such as with weighted gene co-expression network analysis (WGCNA)69. As an 

example of these module formations, the stronger correlated nodes shown in red (Figure 1.6) 

would form the theoretical module due to their stronger relationship and association. 

 

 
Figure 1.6: Correlation networks, basic overview.  
Correlations are calculated between different gene pairs, the quantified relationship (edge) is used to 
construct the full network. After this, module definition is applied to extract different modules within the 
network based on their relationships. Red nodes in the network shows the application of module 
definition where these strongly correlated nodes form a particular module or cluster. 
 

Various different methods for calculating coefficients exist: Pearson correlation coefficients 

(PCC), which best describe linear relationships within a dataset and Spearman correlation 

coefficients (SCC) which allow for non-linear relationships68. CNs as a rule of thumb require 

as little as 16 samples to perform reliable calculations, however, an increase in sample size 

will invariably lead to an increase in statistical power. Many software packages (R-based) have 

been developed to perform these calculations and may apply an array of statistical tests to 

measure the significance of the relationships between genes. Packages such as CoXpress 

are popular choices in the field68 and use PCC and hierarchical clustering in order to determine 
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differentially correlated modules between samples or conditions. The use of clustering implies 

that arbitrary cut-offs are required to form modules, which could lead to reproducibility issues 

in the analysis. DiffCorr, which is another popular R package, uses PCC and Fisher Z-

transformations to identify differentially correlated sets and is mostly used for experimental 

condition comparisons. Other tools such as Molecular Complex Detection incorporate the use 

of GO analysis, but have become rather dated70. These networks remain largely unweighted 

correlation networks, which without proper statistical evaluations, could wrongly emphasize 

several unrelated and randomly correlated relationships69.  

 

This caveat between the difference in simple Pearson/Spearman correlations as compared to 

weighted correlation networks such as WGCNA, lies in escaping the trapping of biologically 

coincidental occurrences through establishment of scale-free network topology69. Scale-free 

topology is a network whose degree distribution follows power laws, this is to say that 

characteristics of the network are independent of the size of the network. Networks of this 

nature retain a relatively constant underlying structure when the number of nodes increase. 

WGCNA achieves this scale-free topology through the application of a power coefficient as 

determined through a function that evaluates the scale-free nature of the network at various 

power coefficients. An appropriate threshold is applied here to ensure that the network holds 

to this topology dynamic. Chiefly WGCNA proves beneficial through the use of topological 

overlaps and hierarchical clustering in modules identification, as such the use of hard 

thresholds is often not necessary70. These analyses produce useful clusters/modules of 

correlated gene sets, while being able to assign a strength of relationship measure which 

holds true for scale-free topology assumptions, proving to be a powerful tool in GRN 

construction. Correlation coefficient networks often struggle at defining more complex 

statistical dependencies such as non-linear relationships71.  

 

1.4.2 Mutual information-based networks (MI) 

 

MI measures the amount of information that a given random variable contains about another. 

Uncertainty about one variable can therefore be reduced based on the knowledge of another 

variable72. In practical terms informative gene feature components are predictive of the 

expression outcome of the target gene as exampled by a network database configuration such 

as STRINGdb. MI share a feature with CNs in that they are sensitive to indirect regulatory 

relationships which can lead to stochastic edges in the network. The remedy for this feature 

is the use of conditional mutual information, which rely on the mutual information of a third 

variable in any given pair comparison.  
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1.4.3 Bayesian networks and Dynamic Bayesian networks (BNs and DBNs) 

 

BNs remain popular choices for GRN construction with Bayes probability theorem at its core. 

These probabilities are combined with graph theory for modelling of the GRN. These graphs 

are directed and acyclic graphs (DAGs) with a set of local probability distributions73. This 

relationship is described as G = (X, A), where X represents the nodes/genes and A the direct 

edges/probabilities of the graph. BNs decompose node sets into conditionally independent 

node subsets which are non-overlapping with regards to their position. Here, the algorithm 

works through a process of discovering the best DAG configurations through belief 

propagation. A key problem with BNs is the lack of cyclic inferences in the DAGs, this means 

that configurations such as AàBàA is not possible in the inference. These graphs have 

direction and do not have cycles or feedback loops74, the lack of which is often solved through 

the process of Dynamic Bayesian models using time series data71. 

 

DBNs are an extension of BNs that infers interaction uncertainties through the use of 

probabilistic graph models73. This allows DBNs to infer cyclic interactions which are important 

in biological networks as feedback loops may exist. DBNs try to resolve optimal DBN 

structures from given gene expression data. Once the structure has been reconstructed, a set 

of probabilities can be learned from methods such as maximum likelihood. Structure learning 

for DBNs can involve any number of methods such as local search, stochastic global 

optimisation or Monte Carlo simulation (MC)75. Compared to BNs which are static, DBNs uses 

conditional probabilities based on discrete time increments76. The simultaneous modelling of 

timescales account for faster interactions within time increments and slower interactions which 

occur much earlier or later in the events record. The models almost construct a sequential 

order which makes variables in the next time increment dependent on the previous increment 

(Figure 1.7). DBNs are commonly used in GRN construction, although the technique has 

become dated with the advancement of ensemble learning and deep learning methods. 
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Figure 1.7: Basic overview of DBNs.  
DBNs use timeseries data and account for the conditional probabilities between time increments. This 
infers the relationship between faster interactions (occurring within a single time step) with that of slower 
interactions (occurring either in the beginning or later in the series).  
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1.4.4 Gaussian graphical models (GGMs) 

 

GGMs are a group of probabilistic models which assume that gene expression are jointly 

Gaussian distributed and represent conditional dependencies between genes as undirected 

graphs71. Here, a correlation network is constructed and transformed into a partial correlation 

network (an undirected graph) and these are known as GGMs77. In order to infer the directed 

nature of GGMs, the graph is then converted into a partially directed graph through estimating 

the pairwise ordering of nodes from multiple testing of the log-ratios of standardized partial 

variances. These partial orderings when projected onto the GGM infer the underlying causal 

network as a subgraph of the directed edges77 (Figure 1.8). The algorithm removes edges 

from the independence graph to obtain the underlying DAG. Limitations of these models lie 

with the assumption of Gaussianity in the distribution, which goes hand in hand with linear 

dependencies between variables. GGMs are undirected and require heuristics to infer 

direction from the graphs, which may prove to be challenging71. 
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Figure 1.8: The principial differences between GGM and CN.  
A) CNs construct all possible correlation coefficients for all genes with a large distribution. B) GGM uses 
partial correlation coefficients (correlates which match a Gaussian distribution) to form a sparse network 
with a more centred median. Median indicated with dashed line; red lines indicate significance regions. 
Distribution plots were constructed from microarray data of IDC development to illustrate real world 
examples49.  
 

1.4.5 Ensemble methods  

 

Ensemble methods loosely define processes that make use of multiple models to solve a 

particular research question, hence the name ensemble. Specifically, ensemble models 

constitute a family of machine learning algorithms that typically construct several models 

during the training process and reach a consensus for all the models constructed. The most 

popular algorithms associated with this class of models are RFs and GBM. Each of these two 

classes also contain various algorithm forms within them and so the general modular basis 

will be discussed with a few specific examples of application.  
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Random Forest trees (RFs) 

One of the most prominent examples of the use of RFs in GRN construction is with an 

algorithm called GENIE3, which was the best performer of the DREAM4 challenge in 201071. 

RFs effectively employ decision trees at its core, which splits the data based on feature values 

causing bifurcation at each step. The result resembles that of a tree with the data split into 

several branches. The drawback to a singular decision tree is that it often works well only on 

the observed data but struggles to fit new data and thus can produce inaccurate predictions. 

RFs solve this problem while utilising the simplicity of decision tree methods. RFs perform 

random sampling of the given data through a process of bootstrapping. Bootstrapping is just 

a method of randomly sampling from data with the one key feature being that data points may 

be reselected. This implies an iterative process whereby the data is randomly sampled with 

each step. A subset of features in each step is also selected rather than all the features and 

a decision tree is constructed for this step. This means that the rout nodes of each decision 

tree are constructed from randomly sampled data and randomly selected features to produce 

a tree. This process is repeated often thousands of times and thus multiple trees describing 

the data is conceived. Each tree is assessed for its output in terms of prediction and the 

consensus of all the trees are taken to answer the prediction, this is referred to as bagging. 

From the randomly sampled data points, some which were not selected (out-of-bag) are then 

used to assess the trees for accuracy, almost like a test set would be used. Each step of forest 

construction can vary the number of features used in tree construction and ultimately the best 

forest is used which describe the data best based on out-of-bag assessment (Figure 1.9).  
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Figure 1.9: Random Forest tree algorithm.  
Input data and their features are randomly sampled through bootstrapping and numerous decision trees 
are constructed based on these samplings. Each tree is evaluated for a consensus output on the out-
of-bag (unsampled data) which describes the overall accuracy of the forest. The process repeats 
several times and the forest with the highest accuracy is chosen for the model.  
 

The application of RFs in constructing GRNs use a set of features (usually the expression 

values of multiple transcription factors or known regulatory genes) in a repetition to predict the 

values of target genes. Simply put, the data are split into potential regulatory genes from which 

the model feature set is to be constructed and potential target genes, which are all the genes 

of the data in an iterative way. The ranked importance of each regulatory gene/feature is 

extracted from the final forest model which quantifies each features contribution to the 

predicted target gene values. The feature which was most instrumental in explaining the 

predicted outcome therefore has a greater probability of regulated the target gene (figure 

1.10). These ranked importance values describe a directed network71,78,79. This essentially 

describes the basis of the GENIE3 algorithm which infers regulatory gene importance with 

regards to each gene in the dataset.  
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Figure 1.10: Supervised learning approach as applied in RFs GRN construction.  
Selected regulatory genes formulate the key variables in the matrix from which the RFs are constructed 
and each gene in the dataset is predicted. The features are ranked for the relative importance in each 
target gene prediction and a directed network is constructed from this.  
 

Gradient Boosting Machines (GBMs) 

GBMs are similar to RFs with the major difference inherent in how the algorithm learns form 

decision trees. GBMs are used in GRN construction chiefly in the same manner as RFs. A 

popular tools for such network construction is GRNBoost2, which forms part of the Arboreto 

suite of GRN tools78. This tool was evaluated in the same DREAM5 challenge as GENIE3, 

and outperformed GENIE3 while reducing computation time.  

 

GBMs learn from short/small trees of a set size and uses the errors from the previous tree to 

inform the next tree, rather than constructing complete trees and consolidating them as is 

done with RFs. Initially the algorithm starts of by using an assumed answer to explain the 

output values, such as an average of the values. Then the residual for each observation is 

calculated and small trees of user-defined size is constructed from the features to explain 

these residuals. The output leaves of these trees are used to recalculate residuals for the data 

and another round of tree construction is performed. Using a learning rate (a set constant), 

which helps to reduce overfit in the data, the residuals and new averages are scaled for each 

tree. The successive trees will then get closer to the observed data through multiple rounds 

of this process with evaluation at every step to help improve the model learning. This algorithm 

thus attempts to get the residuals as close to zero as possible. This describes a process that 

aims to essentially perform multiple small steps in the right direction, which ultimately 

increases accuracy in low variance datasets commonly seen in test set data. This algorithm 

drastically reduces the time with which the model can calculate the accurate outcomes and 
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reduces variance78. The residuals can be calculated a number of ways and the function which 

perform this calculation is referred to as the loss function80.   

 

1.4.6 Graph neural networks (GNNs) 

 

GNNs are a class of deep learning algorithms commonly used in the GRN construction. This 

class of algorithm contains specialised methods which convert graph information into vectors 

which the neural network can learn from. Numerous sub-architectures for this class exist, with 

graph embedding techniques (GET)81 being a sub-type relevant to GRN research. Neural 

networks much like GRNs can be described in terms of nodes and edges which explain the 

particular graph. Typically, the process starts with and adjacency matrix, these matrices 

explain the edge values between nodes and captures the topology for graphs. When the graph 

is unweighted and undirected then edges values will be set at 1. Additional values for nodes 

are stored in separate matrices as they will contain attribute information regarding nodes such 

as gene expression. The use of this adjacency matrix suggests a prior knowledge of gene 

interactions, this can be based on physical evidence such as protein-protein interactions, TF-

binding arrays, metabolic networks or even correlations.  

 

The goal of these techniques is to predict what other gene pairs are likely to interact. 

DeepWalk82 uses Word2Vec frameworks which are well known for their use in natural 

language processing which learning embeddings by performing multiple random walks for 

each node of the graph and then optimises through Skipgram objective function81. Skipgram 

learns embeddings for a node such that it maximises the probability of predicting each related 

node in the random walk. This process is similar to that of another tool GNE which uses 

random sampling of interactions rather than random walk approaches such as Word2vec83. 

These steps just serve to illustrate some form of vectorisation of the given graph data, many 

of forms of vectorisation exist each with their own complexity in constructing vectors from the 

graph. The algorithm uses these vectors in the Skipgram function to learn from nodes in their 

local proximity and produce output embeddings (Figure 1.11). The separation of these data 

post-embeddings is illustrated by the red and blue node separation.  
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Figure 1.11: DeepWalk learning process: general overview.  
Graph networks are randomly sampled through random walk algorithms and then vectorised for training 
in Skipgram. Skipgram performs local learning of the nodes and outputs embeddings (in green shows 
the neural network) which describe the underlying relationships for interaction networks. The data are 
spatially separated according to the relationships from the embeddings show a clear separation of red 
and blude nodes effectively forming clusters 
 

1.5 Examples of GRN research and their advantages 
 

The use of GRNs is ubiquitous across molecular research in various cell types and disease 

interests, perhaps none more so than cancer research. The underlying structure of these 

networks can produce powerful insights into relevant gene discovery, reprogramming 

mechanisms, drug target identification, clinical outcome predictions and many more84. As 

illustration of the usefulness of GRNs in biological research, the discovery of relevant genes 

involved in oligodendrogliomas (type of brain tumour) with a 1p/19q chromosomal co-deletion, 

was achieved through the construction of a GRN from gene expression data as well as copy 

number data85. Here, eight genes with strong implications on signalling pathways and 14 

genes with implications on metabolic pathways were resolved from this network. A well-known 

ELTD1 glioblastoma oncogene showed overexpression while a tumour suppressor gene 

(SLC17A7) under-expressed. This information obtained from the GRN analyses therefore 

provided clear mechanisms ascribed to the disease pathology in these cell types. However, 

the power of GRNs could also be extended to evaluate epigenetic alterations that may possibly 

enhance epigenetic reprogramming of paragangliomas85.  

 

This form of transcriptional reprogramming inference through GRNs analysis is an important 

task. The application of GGMs have proven advantageous in this area of cancer research, 

particularly applied in ovarian cancers and different platinum responses, and rewiring between 

breast cancers of luminal A subtype and basal-like subtype86. These differential networks 

rediscovered known genes associated with platinum resistance in ovarian cancer. This 

process utilised existing data from The Cancer Genome Atlas (https://www.cancer.gov/) and 

some of the existing static GRN data generated. However, more than just resistance can be 
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investigated for cancers and GRNs have also been used to examine and identify potential 

new drug targets. For example, a drug target prioritization method that evaluated an array of 

algorithms such as MI, CN, GGM, RFs and support vector machines (SVMs) were able to 

capture known interactions and indicate novel interactions to predict druggability of gene 

products87. The latter was used to assess target genes derived from the networks and 75% of 

their targets were revealed as potential drug targets. BN analysis of breast cancer data yielded 

two targets for combination therapy, mTOR and STAT3 genes88. This led to the experimental 

implication of cryptotanshinone as a potent modulator resulting of apoptosis in breast cancer 

cell lines.  

 

Beyond the scope of drug interactions and the identification of potentially novel drug targets, 

GRNs are also useful in predicting clinical outcomes for certain types of cancer84. The use of 

SyNet and 11 other network frameworks in conjunction with survival-labelled gene expression 

data was evaluated for breast cancer89. SyNet is a synergistic pairwise gene comparison 

network, built from the survival-labelled data. SyNet is estimated at ~85% accuracy, 

particularly so for the breast tissue-specific networks.   

 

The scope of GRN analysis and advantages in cancer research has been vast. However, the 

use of GRNs in malaria research remains relatively limited despite available transcriptomic 

data for P. falciparum and other Plasmodium species. 

 

1.6 GRNs in malaria research 

 

The use of inferential GRNs in P. falciparum research has been sparse. An integrated network 

derived from various experimental data showed the potential to resolve genes involved in 

erythrocyte invasion during the IDC of the parasite90. Although the network generated relied 

on some of the approaches used in GRN construction, it more accurately constitutes a simple 

interaction or association network and produced little insight into transcriptional regulation. An 

early study of GRNs in P. falciparum research focused on the parasite’s IDC using microarray 

data91. Variational Bayesian Expectation Maximization (VBEM) approaches were used as an 

early attempt to resolve a “skeleton” cell cycle GRN whereby 59 interactions were resolved 

for 38 putative regulatory candidates92. These candidates included proteins such as 

transcription factor MYB2 and a calcium-dependent protein kinase. This skeleton cell cycle 

network provided a first draft of how cell cycle control proteins interact to regulate the IDC.  
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Modelling of the Maurer’s cleft pathway through GGM resolved key candidates that aid in the 

transport of proteins from the parasite cytoplasm to the host erythrocyte surface66. The focus, 

however, was only related to genes in Maurer’s cleft and does not extrapolate to general gene 

regulation in the parasite. More recent work incorporated phenotypic data to understand 

molecular factors at the heart of low- and high-transmissibility of malaria parasites93. Through 

the use of weighted co-expression networks constructed from large DNA-microarray datasets, 

strong insights regarding malaria transmission could be provided and highlighted the 

involvement of AP2-G, histone deacetylase 1 (HDAC1) and a putative histone deacetylase 

(HDA1)93.  

 

In this PhD thesis, we resolved and published two critically important GRNs for P. falciparum, 

which will be discussed in greater detail in Chapter 294,95. Both networks were constructed 

using DBN methods and time series data. With this, we describe two networks focused on 

different phases of parasite development, 1) the proliferative phase of the parasite during its 

IDC and 2) during the differentiative phase associated with gametocyte development. The 

networks allowed inference of regulatory elements controlling proliferation and differentiation. 

However, these GRNs were created on transcriptome data generated from DNA microarray 

studies. Whilst these datasets are informative regarding interactions and regulation of 

particular genes, this data does not lend itself towards more in-depth analyses of additional 

regulatory mechanisms like lncRNAs. RNA-seq datasets are available for the asexual 

parasite’s IDC and allowed for inferences of intricate regulatory mechanisms96, this level of 

resolution was lacking for the prolonged gametocyte development process of P. falciparum. 

We therefore generated a complete RNA-seq dataset spanning the entire gametocytogenesis 

process for P. falciparum (Chapter 3). We could use this information to generate the largest 

and most comprehensive inferred gene regulatory network in the field, which ultimately lead 

to the creation of an applied solution to the identification of gene regulatory elements in malaria 

parasites (Chapter 4). 
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1.7 Hypothesis 
 

Machine learning and network-based pattern deconvolution can delineate factors involved in 

transcriptional regulation in various life cycle stages of P. falciparum. 

 

1.9 Aim 
 

This study aimed to construct GRNS to provide an integrated overview of transcriptional 

regulation for both asexual proliferative phases as well as sexual differentiation in P. 

falciparum and provide a tool for researchers to perform these types of analyses without prior 

knowledge of scripting languages.  

 

1.10 Objectives 
 

1. Construct GRNs to aid in the understanding of factors which drive asexual proliferation 

and sexual differentiation (Chapter 2) 

2. Generate an in-depth transcriptome of all stages of gametocyte development with 

RNA-seq to investigate the relationship between molecular factors and their mutual 

information driven process during sexual differentiation (Chapter 3)  

3. Utilise the power of machine learning and GRN techniques to evaluate regulatory 

factors in P. falciparum, while offering an applied solution to the field (Chapter 4) 

 
Outputs 
 
Manuscripts: 
 

1. van Biljon, R., Niemand, J., van Wyk, R. et al. (2018) Inducing controlled cell cycle 
arrest and re-entry during asexual proliferation of Plasmodium falciparum malaria 
parasites. Sci Rep 8, 16581  

2. van Biljon, R., van Wyk, R., Painter, H.J. et al. (2019) Hierarchical transcriptional 
control regulates Plasmodium falciparum sexual differentiation. BMC Genomics 20, 
920  

3. van der Watt ME, Reader J, Churchyard A, Nondaba SH, Lauterbach SB, Niemand J, 
Abayomi S, van Biljon RA, Connacher JI, van Wyk RDJ, Le Manach C, Paquet T, 
González Cabrera D, Brunschwig C, Theron A, Lozano-Arias S, Rodrigues JFI, 
Herreros E, Leroy D, Duffy J, Street LJ, Chibale K, Mancama D, Coetzer TL, Birkholtz 
LM. (2018) Potent Plasmodium falciparum gametocytocidal compounds identified by 
exploring the kinase inhibitor chemical space for dual active antimalarials. J Antimicrob 
Chemother 1;73(5):1279-1290.  
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4. van Heerden, A., van Wyk, R., Birkholtz, L., (2021) Machine learning uses chemo-
transcriptomic profiles to stratify antimalarial compounds with similar mode of action. 
Cellular and Infection Microbiology. Front. Cell. Infect. Microbiol. 11:558. 

5. van Wyk, R., van Biljon, R., Birkholtz, L. (2021) MALBoost: a web-based application 
for Gene Regulatory Network Analysis in Plasmodium falciparum. Malaria Journal. 
317. 

 
Conferences: 
 

1. The exploration of the P. falciparum gametocyte transcriptome using RNAseq. 
EMBL Conference BioMalPar XIV: Biology and Pathology of the Malaria Parasite. 
May 2018. Meyerhofstraße 1, 69117 Heidelberg, Germany. Poster 

2. Application of network analysis on Plasmodium falciparum transcriptomes at the 
MRC Office of Malaria Research Conference (MOMR) 31 July- 2 August 2016, 
Pretoria, South Africa. Poster 
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Chapter 2 

 

Gene regulatory networks describe potential regulatory candidates controlling P. 
falciparum proliferative and differentiative processes. 

 

2.1 Introduction 
 

The P. falciparum life cycle is characterized by numerous developmental bottlenecks, 

specifically in transitions between the mosquito to human or vice versa that are of interest to 

study for the potential of transmission blocking interventions. However, there is only one point 

in the life cycle at which there is a binary option for which developmental path to follow: the 

point at which blood-stage malaria parasites commit to either asexual (>90%) or sexual 

(<10%) development. During the asexual replicative cycle of the P. falciparum parasite, 

thousands of merozoites are released in the blood stream to initiate the 48 h IDC, resulting in 

malaria pathology due to massive expansion of parasite numbers. This phase of development 

is characterized by a tightly controlled cyclic transcriptional cascade of ~85% of the 

genome20,97. The parasite’s cell cycle during the asexual proliferative phase includes peculiar 

features e.g. asynchronous nuclear divisions within one schizont and specific mechanisms for 

organelle segregation and morphogenesis of daughter merozoites98–102. In unicellular protists 

like Plasmodium parasites, cell cycle control is more closely related to developmental control 

and there is a divergence from canonical cell cycle regulation features101. Conversely, during 

sexual differentiation, the specific activation of the AP2-G transcription factor10,103,104 results in 

a complete reprogramming of the transcriptome as the parasite progresses through terminal 

differentiation into male or female gametocytes, completely losing the cyclic transcriptional 

activation pattern of asexual development95,105.  

 

In terms of specific molecular regulators, several atypical cyclin-dependant kinase (CDKs), 

CDK-related proteins, cyclins and other CDK regulators99,100 have been implicated in cell cycle 

control in P. falciparum, although their involvement in the regulation of canonical eukaryotic 

mitotic cascades is unclear. Despite the identification of some putative regulators of gene 

expression, including the ApiAP2 family of transcription factors106–108 and epigenetic regulation 

of particular gene families60,62, the specific mechanisms controlling transcriptional activation in 

the parasite are incompletely understood, with recent data clearly showing mRNA dynamics 

are also influenced by additional post-transcriptional mechanisms48,49. In depth analyses of 
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unknown regulatory factors associated with cell cycle control during asexual proliferation and 

gametocytogenesis of P. falciparum is needed. 

 

A GRN depicts transcriptional regulation and provides an understanding of the dynamics and 

interaction of genes and GRNs are powerful tools to characterise the regulatory primers or 

control factors associated with developmental processes65,66. Malaria parasites have a 

complex life cycle with associated multifaceted biology and regulatory mechanisms. This drive 

both proliferative processes during asexual replication of the parasite – causing disease 

pathogenesis; or differentiative processes during gametocytogenesis – ensuring disease 

transmission. The parasite is able to tightly control is gene expression during both these 

phases of the life cycle20,94. Although certain regulatory elements like AP2 transcription factors 

have been associated with this regulation, the intricacies of stage-specific gene regulation 

have not been clarified. This makes the parasites’ transcriptome, across both the proliferative 

and differentiative phases of the life cycle, a perfect case to apply GRN analyses. This should 

elucidate the dynamics associated with transcriptional regulation and could identify regulatory 

factors of importance in parasite developmental biology. With more and more data being 

produced for P. falciparum, particularly transcriptomes, a need for deeper interpretation of the 

data comes into demand.  

 

The use of inferential GRNs in P. falciparum research has certainly not been common although 

the potential for resolving genes involved in erythrocyte invasion during the IDC of the parasite 

has been indicated with simplistic gene association networks (GANs) like those generated by 

the STRING database90 (https://string-db.org/). STRING uses several input data including 

empirical protein-protein interaction data from e.g. yeast 2-hybrid systems to connect gene 

pairs to each other. Although BNs often produce impressively accurate results, VBEM could 

resolve only a preliminary GRN for the P. falciparum cell cycle92. Such Bayesian methods 

normally also prove resource intensive and often limits researchers to evaluating a small 

subset of genes at a time76,109.  

 

The popularity of BNs provides an intriguing approach for deeper investigations of the 

parasite’s transcriptional regulation. Several advances in computational power and a wider 

knowledge of transcriptional regulators, creates a climate where BNs may produce greater 

insights76. DBNs in particular have proven to be easily implementable frameworks in our 

experience for various aspects of P. falciparum regulatory networks94,95.  

 

Here, we utilised new datasets that describe the global transcriptome of malaria parasites at 

various timepoints during both their proliferative and differentiative phases. Firstly, DNA 
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microarray-based transcriptome analyses were performed on asexual parasites to evaluate a 

cell cycle transition point important for proliferation. Secondly, the complete process of 

conversion of asexual parasites to gametocytes and the whole of gametocyte development 

was followed with transcriptomics. In both instances, the power of DBNs was harvested to 

analyse these datasets by using an R-based implementation: Gene Regulation Network 

Inference Time Series (GRENITS)109. GRENITS uses a combination of DBN and Gibbs 

Variable Selection (GVS) in conjunction with linear modelling to determine sets of interaction 

probabilities between regulatory nodes and target nodes. In this manner, we were able to 

construct two distinct GRNs capturing the asexual proliferative and sexual differentiation of 

the parasite and provided information on regulatory elements thereof94,95.  

 

The content of this chapter has been published in part in the following instances: 

1. van Biljon R, Niemand J, van Wyk R, Clark K, Verlinden B, Abrie C, von Gruning H, 
Smidt W, Smit A, Reader J, Painter H, Llinas M, Doerig C, and L Birkholtz (2018) Inducing 
controlled cell cycle arrest and re-entry during aseuxal proliferation of Plasmodium 
falciparum parasites. Scientific Reports, 8:16581, doi:10.1038/s41598-018-34964-w (IF 
4.609). 
 

2. van Biljon R, van Wyk R, Painter HJ, Orchard L, Reader J, Niemand J, Llinás M, Birkholtz 
L. (2019). Hierarchical transcriptional control regulates Plasmodium falciparum sexual 
differentiation. BMC Genomics, Dec 3;20(1):920.DOI: 10.1186/s12864-019-6322-9, (IF 
3.501) 

 

In each instance above, the experimental component was contributed by R van Biljon. The 

data generated was subsequently used and computational work pertaining to GRNs were 

performed in this PhD. The computational data analysis in these papers were therefore 
driven by the PhD candidate R van Wyk. 

 

2.2 Methods: 
 

2.2.1 Gene regulatory network of P. falciparum asexual proliferation control points  

 

2.2.1.1 Parasite culturing, experimental cell cycle arrest and sampling 

In vitro cultivation of intraerythrocytic P. falciparum parasites held ethics approval from the 

University of Pretoria (EC120821-077). A cDNA microarray dataset was generated on the 

Agilent G2600D Microarray Scanner (Agilent Technologies, USA) for parasite samples that 

were produced following cell cycle arrest induced in asexual parasites. Asexual P. falciparum 

NF54 parasite cultures were maintained at 5-8% parasitaemia, 5% haematocrit in human 

erythrocytes at 37°C in RPMI 1640 medium supplemented as described under hypoxic 
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conditions (90% N2, 5% O2, and 5% CO2)110,111 with shaking at 60 rpm. Synchronous asexual 

cultures (>95% synchronicity of ring-stage parasites, 3 hr window) was obtained by at least 

three consecutive cycles of treatment with 5% D-sorbitol, each 6-8 h apart. All cultures were 

maintained with daily medium changes and monitored with Giemsa-stained thin smear 

microscopy. 

 

Arrest was induced by removing the polyamine putrescine as key mitogen required for parasite 

cell cycle progression, by the addition of a specific inhibitor, difluoromethylornithine (DMFO). 

This caused an arrest at the G1/S transition point of the parasite’s cell cycle. The arrest was 

then reversed by the addition of exogenous putrescine, which allowed the parasite to re-enter 

(RE) the cell cycle, with samples taken at consecutive timepoints of 3 h (RE1), 6 h (RE2) and 

12 h (RE3) following reversal (50 ml samples at 5% haematocrit, 10-15% parasitaemia). cDNA 

microarray was performed on custom microarray slides that contained 12 468 oligos (60-mer, 

Agilent Technologies). Differentially expressed (DE) genes were identified after robust-spline 

within-slide normalization and Gquantile between-slide normalization as genes with log2 fold 

change (log2 FC of untreated [UT] / treated [T]) of 0.75 in either increased or decreased 

abundance. All experiments were performed by Dr. R. van Biljon112. The DE gene sets from 

the respective arrested transcriptome and the RE points where subsequently used 

downstream to inform regulatory candidates in the GRN construction. 

 

2.2.1.2 GRN construction from asexual proliferation control points 

A Gene Association Network (GAN) for P. falciparum from STRING v 10.0 113 (https://string-

db.org/) was filtered for DE genes present in the datasets for the RE1 and RE2 time points. 

STRING categories used consisted of experimentally determined interactions, curated 

database references, fusion data as well as co-expression. A combined score was calculated 

for these categories in accordance with STRING guidelines and a threshold of ³ 0.8 was 

imposed on the data.  

 

Differentially expressed (log2 FC>0.75) in the RE1 and RE2 timepoints were used to inform 

the construction of a GRENITS-based GRN. The postulation was that transcripts that were 

immediately differentially expressed upon re-entry into the cell cycle should have importance 

and drive subsequent processes required for the continuation of the cell cycle and ultimately 

result in proliferation. These putative “regulators” were subsequently evaluated through the 

GRENITS package in R 109 with an oligonucleotide DNA microarray dataset, which captured 

hourly transcription during asexual development over the 48 h cycle (GSE66669) 48. This 

dataset provides the most comprehensive time series dataset of asexual development clearly 
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underpinning the progression of transcripts in the IDC. GRENITS constructs a linear 

interaction model through Gibbs variable selection on a DBN. Differentially expressed genes 

from the RE1 and RE2 timepoints were used as regulators and evaluated target genes from 

the RE2 and RE3 analysis. A probability threshold > 0.25 was considered for the interactions. 

Consolidations of the GRENITS network and the GAN was done based on edge reference.  

 

2.2.2 Gene regulatory network of P. falciparum sexual differentiation  

 

2.2.2.1 Parasite culturing and sampling 

Asexual P. falciparum NF54 parasite cultures (NF54-pfs16-GFP-Luc,114) were maintained at 

5-8% parasitemia 37°C in human erythrocytes at 5% haematocrit in RPMI 1640 medium 

supplemented as before under hypoxic conditions 110,111. Gametocytogenesis was induced 

from 3x synchronized asexual parasite cultures by employing a strategy of concurrent nutrient 

starvation and a decrease of hematocrit115. Ring-stage parasite cultures (>95%) were adjusted 

to a 0.5% parasitaemia, 6% haematocrit in glucose-free medium containing culture (day -3) 

and maintained under the same hypoxic conditions at 37°C without shaking. After 72 h, the 

haematocrit was adjusted to 3% (day 0) and after another 24 h, the glucose-free medium was 

replaced with medium containing 0.2% D-glucose and this maintained for the duration of 

gametocytogenesis for a total of 16 days. Contaminating asexual parasites were removed 

daily with 5% D-sorbitol and/or N-acetylglucosamine treatment for 15 minutes at 37°C.  

 

Samples (30 ml of 2-3% gametocytaemia, 4-6% haematocrit) were taken daily for microarray 

analysis on days -2 to 13 following gametocyte induction and enriched for gametocytes with 

either 0.01% w/v saponin treatment (3 min, 22°C) for early-stage gametocytes (stage I-III) or 

via density centrifugation (20 min at 800xg) using Nycoprep 1.077 cushions (Axis-Shield) for 

late stage gametocyte (stage IV/V) 115.  

 

DNA microarrays were performed on custom Agilent 60-mer 8x15k arrays (AMADID#037237) 

and scanned on an Agilent G2600D Microarray Scanner (Agilent Technologies, USA) data 

were included that had both red and green intensities that were well above background and 

passed spot filters (P<0.01) and log2 (Cy5/Cy3) expression values. Genes that varied 

significantly during gametocytogenesis were identified with a one class, two-tailed t-test with 

an alpha value of 0.05 using Welch approximation and testing against mean=0. Data were 

clustered hierarchically according to Euclidean distance with average linkage clustering. All 

experiments were performed by Dr. R. van Biljon112 (GSE104889). 
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Genes that varied significantly during gametocytogenesis were identified by conducting a one 

class, two-tailed t-test with an alpha value of 0.05 using welch approximation and testing 

against mean=0. Data were clustered hierarchically according to Euclidean distance with 

average linkage clustering. Pearson correlation coefficients were calculated in the R statistical 

package (version 3.2.3) comparing the expression of genes at each time point with every other 

time point and visualized using the corrplot package in R. Genes involved in different metabolic 

pathways were obtained from the Malaria Parasite Metabolic Pathways (MPMP) database and 

sourced from the Kyoto Encyclopaedia of Genes and Genomes (KEGG)116,117. Subsets of 

genes related to functional categories were obtained from PlasmoDB, using search terms 

histone*, kinase, ApiAP2, signalling and signalling transduction along with published 

phosphatases118 and epigenetic factors119. Significantly affected genes in these subsets were 

identified by ranking increased and decreased genes with an alpha value of 0.05 using the 

entire time course as input.  

 

2.2.2.2 Gene association network for gametocytogenesis 

Genes that varied significantly during gametocytogenesis were used to map a gene 

association network (GAN) from the STRING database v10.0 in R113. The GAN was used to 

show the association between genes based on co-expression, homology, protein-protein 

interactions, in silico predictions etc. and mapped with a combined confidence score greater 

than 0.7 (text-mining data excluded) to produce a high confidence network. Subsequently 

interacting nodes (interacting with the probe nodes) were included in the network mapping, 

with a total of 1350 nodes and 3357 edges. Sub-graphing of the original network was 

performed to highlight interactions of interest after significant gametocyte nodes with >50 

interactors were decreased by removing interacting nodes that did not vary substantially 

throughout maturation for visualization in (746 nodes and 1616 edges). Network visualization 

was done using igraph package in R using the Fruchter-Reingold layout algorithm. Nodes 

were colour scaled according to expression values120. 

 

2.2.2.3 GRN construction for sexual differentiation 

A total set of 13 ApiAP2 transcription factors (all ApiAP2’s with increased abundance during 

gametocyte development) were used to evaluate their possible function in the regulation of 

sexual development across the 16-day time series. A GRN was constructed using GRENITS 

and using the 13 ApiAP2’s as regulators with a probability threshold >0.7 against the 

microarray dataset (GSE104889). The number of links per model, per threshold was evaluated 

to determine the set probability threshold for the constructed GRENITS network (probability 
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threshold >0.7). Visualization of the GRENITS network was performed using the igraph 

package in R120. 

 
2.3 Results: 
 

2.3.1 Candidates for cell cycle regulation in P. falciparum asexual proliferation inferred 
as a result of strategic arrest and re-entry  

 

Strategic cell cycle arrest and re-entry at the G1/S transition point within asexual proliferation 

of P. falciparum parasites96 (Figure 2.1), resulted in a dataset where candidate genes with the 

potential to drive developmental regulation during synchronized cell cycle re-entry can be 

inferred. The arrest was based on the treatment of asexual parasites during its cell cycle G1 

phase (ring-stage parasites at 0-12 h post-invasion) with DFMO as suicide inhibitor of ornithine 

decarboxylase. This prevents the synthesis of polyamines as mitogens for cell cycle 

continuation and arrests parasite proliferation in early trophozoite stages, corresponding to 

the parasite’s G1/S transition point of its cell cycle. This arrest can then be reversed with 

addition of the mitogen (putrescine). The cell cycle re-entry was monitored over 12 h with 

samples taken at 3, 6 and 12 h after re-entry (RE1-3, Figure 2.1).  

 

This system therefore allowed sampling and evaluation of the asexual parasite’s transcriptome 

at discrete points corresponding to the cell cycle to determine regulatory elements. As such, 

DNA microarrays were performed on cell cycle arrested parasites and this transcriptome 

compared to the differential expression (log2 FC >0.75 increased or decreased, FC=UT/T) of 

transcripts during the three re-entry points (Figure 2.2). 
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Figure 2.1: P. falciparum cell cycle regulation at the G1/S transition point.  
Cell cycle arrest was induced in asexual P. falciparum parasite by treatment with difluoromethyl 
ornithine (DFMO) as suicide inhibitor of PfAdoMetDC/ODC, which is expressed from 12 h post-infection 
(hpi). This results in parasite cell cycle arrest in early trophozoite stages (corresponding to parasites at 
18-22 hpi). The arrest can be reversed by the addition of putrescine as mitogen, resulting in parasites 
re-initiating cell cycle development. Samples taken at various timepoints after re-initiation provide data 
on processes involved in cell cycle control. RE1: re-entry timepoint 1, RE2: re-entry timepoint 2 and 
RE3: re-entry timepoint 3. 94. 
 

The cell cycle arrest at the G1/S transition point, showed 988 differentially increased 

transcripts, while 975 decreased (Figure 2.2 A), showing that about a third of the parasite’s 

genome is affected between the point of arrest and that these changes are reversed after 

progression through the cell cycle has been re-established. These differentially perturbed 

transcripts were further investigated for 4 functional clusters of genes: (i) kinases and 

phosphatases (228 transcripts), (ii) DNA replication (73 transcripts), (iii) transcription and 

chromatin dynamics (272 transcripts) and (iv) Ca2+ signalling associated processes (95 

transcripts). The dynamics of the DE genes was assessed by probing for their occurrence 

either immediately upon re-entry in RE1 as early responders (14 genes) or subsequently 

during RE2 (intermediate responders) or RE3 (late responders) (Figure 2.2 B).  Re-entry into 

the cell cycle was characterised by the immediate expression of myb1 and cdpk4 upon 

polyamine supply, whilst sap18 and pk2 both display decreased expression upon cell cycle 

re-entry. After this initial expression of genes, a second subset are associated with RE2 

(n=91), including kinases (pk5, pkac and pkar), set9, ApiAP2 pf3d7_1115500, DNA primase 

and an unannotated gene. The latter, pf3d7_0105800, contained an Interpro domain 

associated with cyclin dependent kinases (IPR000789). Genes involved in the late response 
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(RE3) are enriched in transcription factors (3 ApiAP2 family members) and CDKs and Aurora 

kinases (crk3, 4, 5 and ark2), with increased expression of pre-RC genes orc1&2 and mcm3, 

4, 5, 6, 8 also evident. 

 

 
Figure 2.2: Molecular mechanisms controlling cell cycle re-entry.  
A) The transcriptomes of parasites that re-entered their cell cycles (RE1-3) were analysed in context of 
genes matching key terms associated with cell cycle regulation using PlasmoDB (v33). B)  The number 
of DE (either increased or decreased abundance) genes associated with specific cell cycle-
related functional associations in histograms and genes of interest highlighted in grey boxes. 
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Gene names: myb1: pf3d7_1315800 transcription factor MYB1, sap18: pf3d7_0711400 
histone deacetylase complex subunit SAP18, cdpk4: pf3d7_0717500 calcium-dependent 
protein kinase 4, pk2: pf3d7_1238900 protein kinase 2, set9: pf3d7_0508100 SET domain 
protein, putative, gcn5: pf3d7_0823300 histone acetyltransferase GCN5, pk5: pf3d7_1356900 
protein kinase 5, pkac: pf3d7_0934800 cAMP-dependent protein kinase catalytic subunit, 
pkar: pf3d7_1223100 cAMP-dependent protein kinase regulatory subunit, crk5: 
pf3d7_0615500 cdc2-related protein kinase 5, crk4: pf3d7_0317200 cdc2-related protein 
kinase 4, nek1: pf3d7_1228300 NIMA related kinase 1, ark2: pf3d7_0309200 serine/threonine 
protein kinase ARK2, putative, crk3: pf3d7_0415300 cdc2-related protein kinase 3, pkg: 
pf3d7_1436600 cGMP-dependent protein kinase, orc: origin recognition complex subunit 
(pf3d7_1203000, pf3d7_0705300) and mcm: DNA replication licensing factor 
(pf3d7_0527000, pf3d7_1317100, pf3d7_1211700, pf3d7_1355100, pf3d7_1211300). 
 

The identification of the early-responder genes in RE1 enable inference of directionality of 

gene regulation for our putative regulatory candidates: ie RE1àRE2àRE3; RE1àRE3 or 

RE2àRE3. We used the dynamics in expression of cell cycle-associated genes over the full 

48 h cycle49 to predict directional relationships between particularly important gene nodes 

during re-entry with the GRN, based on co-expression data obtained at various re-entry time 

points. These regulatory candidates and their resolved target genes were used then to 

construct an interconnected subnetwork of factors driving the cell cycle progression (Figure 

2.3). GRENITS probabilities >0.25 and STRING combined scores >0.8 was used to define the 

edges of the subnetwork.  

 

The subnetwork revealed 6 key nodes that were DE in RE1 and started the initial cascade of 

gene expression as the parasite progresses through its cell cycle (Figure 2.3). In the 1st arm, 

Ca2+ signalling was shown to play a primary role in enabling cell cycle progression. The 

transcripts for cdpk4 and pk2 were closely interconnected nodes, both acting on downstream 

kinases and Ca2+ signalling machinery (e.g. pkg, pkac and pkar). Interestingly, cdpk4 

increased in transcript abundance while pk2 decreased and showed a directional interaction 

from cdpk4 to pk2, suggesting that cdpk4 might regulate pk2, decreasing its expression for 

the cell cycle to progress. Cdpk4 also had 58 direct connections to transcripts involved in Ca2+ 

signalling, transcription, kinases and phosphatases, making it one of the central nodes in this 

network (Figure 2.3). This suggests that CDPK4 expression could stimulate entry into S-phase 

and lead to the expression of genes essential for completion of schizogony in P. falciparum, 

similar to its requirement for entry into S-phase in P. berghei gametogenesis18. 
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Figure 2.3: A GRN generated by GRENITS on differentially expressed genes driving cell cycle re-entry in asexual P. falciparum parasites.  
A GRN was constructed between putative regulators of cell cycle re-entry by combining co-expression analysis (GRENITS, probability linkage score > 0.25) 
shown as solid grey edges and functional association between genes (STRING v 10.0, combined probability score > 0.8) shown as dashed black edges, while 
associations stemming from both analyses are shown as solid black lines. Transcripts that were differentially expressed by RE1 (■), RE2 (●) and RE3 (♦) are 
indicated according to their increased (red) or decreased (blue) transcript abundance. Genes of interest are indicated by gene symbol on the network, (RR = 
ribonucleoside-diphosphate reductase large (l) subunit, pf3d7_1437200 and small subunit (s), pf3d7_1015800, ApiAP2 (1) = pf3d7_0613800, ApiAP2 (2) = 
pf3d7_0802100) while genes that were not subsequently analysed were collapsed into pie diagrams in terms of their functional cluster in the legend. Gene 
names: myb1: pf3d7_1315800 transcription factor MYB1, sap18: pf3d7_0711400 histone deacetylase complex subunit SAP18, cdpk4: pf3d7_0717500 calcium-
dependent protein kinase 4, pk2: pf3d7_1238900 protein kinase 2, set9: pf3d7_0508100 SET domain protein, putative, gcn5: pf3d7_0823300 histone 
acetyltransferase GCN5, pk5: pf3d7_1356900 protein kinase 5, pkac: pf3d7_0934800 cAMP-dependent protein kinase catalytic subunit, pkar: pf3d7_1223100 
cAMP-dependent protein kinase regulatory subunit, crk5: pf3d7_0615500 cdc2-related protein kinase 5, crk4: pf3d7_0317200 cdc2-related protein kinase 4, 
nek1: pf3d7_1228300 NIMA related kinase 1, ark2: pf3d7_0309200 serine/threonine protein kinase ARK2, putative, crk3: pf3d7_0415300 cdc2-related protein 
kinase 3, pkg: pf3d7_1436600 cGMP-dependent protein kinase, orc: origin recognition complex subunit (pf3d7_1203000, pf3d7_0705300), mcm: DNA 
replication licensing factor (pf3d7_0527000, pf3d7_1317100, pf3d7_1211700, pf3d7_1355100, pf3d7_1211300), pf3d7_1133400 apical membrane antigen 1, 
pf3d7_0918000 glideosome-associated protein 50, pf3d7_1366500 nucleoside diphosphate kinase and pf3d7_1107400 DNA repair protein RAD51. 
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Importantly, the transcription factor myb1 is indicated as a differential transcript in RE147. The 

potential importance of myb1 as a regulator of cell cycle control is emphasized by it 

connecting, and per implication regulating, 12 other cell-cycle related genes. Of significance 

is the fact that myb1 connects with cdpk4 and two ApiAP2 transcription factors 

(pf3d7_0802100 and pf3d7_0613800, also DE in RE3). This implies that myb1 could be 

involved in sequence-specific transcriptional regulation of other transcription factors and 

genes involved in signalling events. MYB1 also directly associates with epigenetic factors such 

putative histone acetyl transferase set9 (in the RE2 set) and pf3d7_1020700 (decreased in 

RE2). The GRN therefore implicates myb1 as an important and central regulator of gene 

expression during cell cycle regulation of malaria parasites.   

 

The possible role of epigenetic mechanisms involved in cell cycle regulation extends further 

through decreased abundance of sap18 (RE1), which potentially permits the expression of 

pre-replicative licensing factors (mcm3-6), DNA polymerases and other replication factors 

(including rad51, rec2 and pf3d7_1108000) as indicated by the interactions between sap18 

as controlling node to these transcripts. Furthermore, pf3d7_1020700, a putative histone 

acetyltransferase, is also highly connected (nine connections) and the genes that it connects 

to are all involved in transcriptional events. Both sap18 and pf3d7_1020700 have not been 

functionally characterized to any extent in P. falciparum. This highlights the power and 

importance of GRNs, such that genes are ascribed with potential important regulatory 

functions to control cell cycle regulation in asexual P. falciparum parasites, that would not 

otherwise have been identified.  

 

Taken together, the GRN in this instance was applied as a powerful tool to identify novel 

regulatory elements that control proliferation of malaria parasites and elucidate the molecular 

determinants of a cell cycle checkpoint in the normally asynchronously dividing asexual 

parasite.  

 

2.3.2 The molecular landscape undergoes specific changes as gametocytes progress 
through development 

 

Gene-association network analysis (STRING) was used to associate functionality to 

transcripts that were significantly increased in abundance during gametocyte development. A 

complete transcriptome was generated for each day of gametocyte development and provided 

a high-resolution dataset to explore for regulatory elements. Unlike for the cell cycle, the 

question of regulation in this instance was much broader, making it difficult to apply a dynamic 
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Bayesian network in the same way, as there were not putative regulators that could be used 

as a starting point for this study. Thus, here we applied a more fundamental network approach 

to provide an overview of how gene expression changes throughout gametocytogenesis, 

before building out more complicated approaches in the rest of the thesis.  Transcripts with 

significantly increased abundance during gametocytogenesis (a<0.05) were mapped to their 

interacting partners to identify processes that are regulated during specific times in 

gametocyte development (Figure 2.4). Two clusters of transcripts were increased in 

abundance immediately at the onset of gametocyte development and characterized stage I 

(day 3) gametocytes. Within these, biological enrichment for transcripts associated with fatty 

acid biosynthesis and biotin metabolism (GO: fatty acid biosynthesis, fold enrichment=29.41, 

P=1.91x10-8; GO: biotin metabolism, fold enrichment=33.62, P=2.19x10-5) was observed. The 

cluster enriched for fatty acid and biotin metabolism included five genes that showed 

significantly increased transcript abundance during gametocyte development and include 

enoyl-acyl carrier reductase (enr, pf3d7_0615100), malonyl CoA-acyl carrier protein 

transacylase precursor (mcat, pf3d7_1312000), 3-oxoacyl-[acyl-carrier-protein] reductase 

(FabG, pf3d7_0922900), beta-ketoacyl-ACP synthase III (kasIII, pf3d7_0211400) and the 

biotin carboxylase subunit of acetyl CoA carboxylase (putative ACC, pf3d7_1469600). These 

genes interact with genes also involved in fatty acid storage and metabolism as well as the 

tricarboxylic acid (TCA) cycle. One of the interactors, acyl-CoA synthetase 9 

(pf3d7_0215000), is expressed throughout gametocytogenesis. Interestingly, while seven of 

the acyl-CoA synthetase genes show increased expression during asexual development121, 

only the parent gene122 (acyl-CoA synthetase 9, pf3d7_0215000) is expressed during 

gametocytogenesis. These results indicate that the differences between asexual and 

gametocyte metabolism may involve more processes than previously described14,123.  

 

Transition from the onset of gametocyte development (stage I) to gametocyte differentiation 

(stage IIa) is characterized by the significant increase in abundance in transcripts associated 

in a cluster involved in microtubule-based movement, cellular component movement and 

microtubule-based processes, from day 4 onwards (GO: protein polymerization, fold 

enrichment=86.82, P=2.72x10-8, GO: mitochondrial respiration, fold enrichment=37.21, 

P=6.48x10-7 GO: nucleotide metabolism fold enrichment=32.9, P=8.03x10-8). The increase in 

expression of genes involved in the TCA cycle and mitochondrial respiration correlates with 

metabolomic studies of gametocytogenesis14,123 and were characterized by a concurrent 

decrease of expression in genes involved in glycolysis. Several of the transcripts (e.g. 

pf3d7_1020100, pf3d7_1122900, pf3d7_0906400, pf3d7_1020300) and their interactors form 

cytoskeletal components and include a microtubule binding protein EB1 homologue 

(pf3d7_0307300), which interact with ark1, ark2 and ark3 (pf3d7_0605300, pf3d7_0309200, 
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pf3d7_1356800). These kinases show differential expression throughout gametocytogenesis: 

ark2 with increased transcript abundance throughout development; ark1 is increased from 

stage II-IV and ark3 only increased during stage IV-V development. Within this cluster, 

adenylate kinase 2 (pf3d7_0816900) interacts with 14 genes mostly involved in mitochondrial 

respiration and nucleotide metabolism. Overall, this cluster highlights many known aspects of 

the divergence from asexual to sexual parasites, namely an increased reliance on 

mitochondrial metabolism and the cytoskeletal remodelling gametocytes undergo to allow for 

their uniquely elongated shape14,124. 
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Figure 2.4: Gene interaction network analysis reveals the molecular landscape of gametocyte 
maturation.  
Genes that were significantly increased in expression during gametocyte were mapped along with their 

subsequent interactions (STRING database network with combined confidence threshold >0.7) to 

identify key transcriptional role-players that shape the gametocyte transcriptome. Interactions were 

mapped to days corresponding to the developmental stages described below each network. For visual 

clarity, nodes with more than 50 interactions had interactors that do not vary substantially in expression 

omitted from the Figure. Coloured bars indicate a summary of enriched GO terms within clusters of 

genes expressing during each developmental stage with the corresponding clusters circled with 

matching colours. The weight of the circled lines correlate to the increased number of transcripts within 

the cluster that showed increased abundance. Genes that characterize sex-specific development were 

monitored over the time course and the start and peak of their increase in transcript abundance 

indicated for males and females with open symbols indicating start of expression and filled symbols 

indicating peak of expression. 
 

Stage III-IV development is characterized by induction of two small clusters involved in DNA 

recombination and repair (GO: DNA recombination, fold enrichment=10.47, P=8.56x10-4, GO: 

DNA repair, fold enrichment=7.18, P=2.41x10-5). Two significantly expressed transcripts 

include meiotic recombination protein DMC1 (pf3d7_0816800) and RuvB-like helicase 1 

(ruvb1, pf3d7_0809700). DMC1 interacted with DNA repair and transcripts for recombination 

proteins including rad54 (pf3d7_0803400) and rad51 (pf3d7_1107400) whilst ruvb1interacted 

with histone H2A variant H2A.Z (pf3d7_0320900) signifying the transition of the gametocyte 

in starting to prepare for gametogenesis in these stages.  

 

A strong cluster with transcripts involved in protein import and localization into the nucleus 

and chromatin modification was present throughout stage I-IV development (days 3-10) (GO: 

protein import into nucleus, fold enrichment=23.21, P= 8.96x10-5; and GO: chromatin 

modification, fold enrichment=10.09, P=9.96x10-4). This gene cluster was unique as 23 out of 

32 significantly expressed transcripts in this cluster were highly increased in abundance (log2 

(Cy5/Cy3) of >0.5) and these transcripts were also the most highly connected to each other; 

26 of the 32 transcripts interacted with at least one other significantly regulated gene. For 

instance, the cluster contains the CCR4-NOT transcription complex subunit 2 (not2, 

pf3d7_1128600) which is significantly expressed (P<0.05), associated with interacting 

partners including other members of the CCR4-NOT transcription complex, of which all but 

CCR4-associated factor 1 caf1 (pf3d7_0811300) and a NOT family protein (pf3d7_1417200) 

are increased in abundance during gametocyte development.  

 

The final stages of gametocyte maturation (stage IV-V differentiation) were characterized by 

the absence of all clusters associated with earlier stages of development (except for protein 

polymerization, mitochondrial respiration, and nucleotide metabolism) and the presence of a 

cluster of transcripts associated with host/vector entry and locomotion (GO: entry into host or 

other organism, fold enrichment=9, P=2.42x10-5, and GO: locomotion fold enrichment=6.96, 
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P=1.05x10-4). The cluster contained four genes significantly expressed, with pf3d7_0914100 

(unknown function) the most associated gene, interacting with 125 other genes (96 

interactions displayed in Figure 2.4). These interactors include ark3, cdpk4 (pf3d7_0717500), 

the ookinete-associated transcription factor ap2-o (pf3d7_1143100), dynein light chain 

(pf3d7_0729800) and a protein phosphatase (ppm5, pf3d7_0810300) as well as a number of 

genes involved in invasion including reticulocyte binding homologues Rh1, 2a, 2b, 5; 

erythrocyte binding antigen eba140 (pf3d7_1301600), merozoite surface protein 11 (msp11 

(pf3d7_1036000). Several of these transcripts have been implicated in significant roles for 

completion of the mosquito stages of the life cycle (ap2-O, cdpk418) and suggests that 

exported proteins that typically enable antigenic interactions in the blood stage has a further 

role in mosquito-stage development. 

 

2.3.3 Transcriptional dynamics of sex-specificity and translationally repressed genes 

 

Gametocytogenesis is also associated with the formation of male and female gametocytes. 

Transcripts associated with sex-specificity22 were probed in the gametocyte transcriptome 

data and showed differential expression patterns. We show that sex-specification is a process 

initiated early during gametocyte development. Male-specific genes (n=528)22 including male 

gamete fusion factor hap2 (pf3d7_1014200), alpha tubulin 2 (pf3d7_0422300) and cdpk4 

(pf3d7_0717500) on average first start appearing on day 4 of development in stage IIa (Figure 

2.4). The male specific genes gradually increase in expression and peak on day 9 of 

development in stage IV gametocytes (log2 (Cy5/Cy3) =0.45). Comparatively, female-specific 

genes (n=735)22, including pfs25 (pf3d7_1031000), ookinete surface protein p28 

(pf3d7_1030900) and transcription factor ap2-O (pf3d7_1143100) measurably increase in 

expression only from stage III (day 5/6) of development. However, peak expression of female-

specific genes occurs slightly earlier than male-specific genes on day 8 (log2 (Cy5/Cy3) =0.74). 

 

Translational repression of genes transcribed during gametocytogenesis is well documented 

in both P. falciparum and P. berghei gametocytes, particularly for mature stage V gametocytes 
22,125–127. However, the transcriptional dynamics of these transcripts during gametocytogenesis 

has not been investigated. We used the full gametocytogenesis transcriptome and mapped 

the putative translationally repressed genes (n=509)22 thereto (Figure 2.4). Most of the 

translationally repressed genes (n=322) were not actively transcribed, however, two clusters 

of genes showed a concerted increase in expression throughout gametocytogenesis, the first 

of which already showed increased expression levels from stage I of development (n=90). The 

second cluster of genes increased in expression only from stage III of development and 
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included several ookinete associated proteins including psop6, 13 and 20 (pf3d7_0630200, 

pf3d7_0518800, pf3d7_0715400), ccp4 (pf3d7_0903800) and p28 (pf3d7_1030900). This 

indicates that gametocytes already synthesized genes necessary for gametogenesis from the 

onset of sexual differentiation rather than just the late stages, which is the only point at which 

the transcript abundance of these genes were previously investigated. 

 

2.3.4 Hierarchical contribution of transcription factors and kinases to gametocyte 
development 

 

Given the broad involvement of ApiAP2 transcription factors and kinases to different life cycle 

stage progressions, individual transcripts from these two clusters were probed with GRENITS 

(Figure 2.5) to identify other associated genes in the gametocyte transcriptome that show 

patterns of expression that could result from direct or indirect regulation. The 13 important 

ApiAP2 family members as well as 40 kinases that were significantly increased in abundance 

were interrogated.  

 

Amongst the kinases, 12 were highly connected (Figure 2.5) with possible regulatory activity, 

of which only mapk1 (pf3d7_1431500) is putatively translationally repressed22. Along with 

mapk1, glycogen synthase kinase 3 (gsk3, pf3d7_0312400) and kinesin 13 (klp8, 

pf3d7_1245100) are associated with microtubule dynamics128,129. The NIMA-related kinase 4 

(nek-4, pf3d7_0719200) was also associated with mitotic spindle microtubules130 and has 

been shown to fulfil essential functions in the sexual stages of development131, consistent with 

the gene product being involved in regulatory activity within the parasite. While mapk1 and 

klp8 are increased in abundance during the later stages of gametocytogenesis, gsk3 is 

increased from stage I of development and nek-4 is highly increased in expression between 

day 6-9 (stage III-IV) of development. The expression of these genes do taper down as the 

parasite enters stage V of development, as the rigid microtubule network present in the earlier 

stages of gametocyte development depolymerizes as the parasite matures17,132. This seems 

to suggest the involvement of kinases in the dynamics of the microtubule network constructed 

during sexual development124,133. 

 

Among the ApiAP2 transcription factors, five were shown to each regulate sets of ≥7 genes in 

the gametocyte transcriptome and these transcription factors show a cascade-like expression 

profile during gametocytogenesis (Figure 2.5). Ap2-g (pf3d7_1222600) is expressed first 

during gametocyte development and regulates a set of 19 genes37. pf3d7_0934400 and 

pf3d7_0611200 are successively expressed during the early stages of gametocyte 
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development, with each of these regulating sets of 12 and 36 genes, respectively. 

pf3d7_0611200 interestingly also putatively regulates two other ApiAP2 transcription factors, 

pf3d7_1107800 and pf3d7_1139300. As gametocytes develop into stage II-III, 

pf3d7_1317200, a ApiAP2 family member also previously associated with gametocyte 

regulation37,106, peaks in expression and pf3d7_1317200 regulates a smaller set of only seven 

genes. Although the putative regulated genes identified in the study for each of the 

transcription factors were queried for functional enrichment, none was found at P<0.001. In 

addition to the in silico analysis correlating the cascade-like expression profiles of the ApiAP2 

members to possible regulatory targets, we also correlated the expression profiles of their 

experimentally validated target genes37,106 as a direct indicator of functionality of these 

transcription factors in regulation of gametocytogenesis.   
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Figure 2.5: Specific regulatory elements contribute towards gametocytogenesis.  
Putative regulators were chosen from significantly expressed kinases (P<0.05) and ApiAP2 

transcription factors that show positive expression during gametocyte development. A gene regulation 

inference network was calculated (GRENITS with probability cutoff of >0.7) for the chosen ApiAP2 

transcription factors (red nodes) and kinases (blue nodes) against the total gametocyte transcriptome 

to identify regulated nodes (grey nodes). Highly connected nodes are indicated with the corresponding 

PlasmoDB ID. Where available, annotated gene names are given: GSK3; pf3d7_0312400, KLP8; 
pf3d7_1245100, AP2-G; pf3d7_1222600, GK; pf3d7_1351600, MAPK1; pf3d7_1431500, Nek-4; 
pf3d7_0719200. 

 

2.3.5 Resolution of ApiAP2 transcription factors driving gametocyte maturation 

 

In order to further investigate the contribution of transcription factors associated with 

transcriptional regulation in gametocytogenesis, the ApiAP2 family of transcription factors 
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were closely interrogated for expression during the time course. Of the 27 ApiAP2’s, only 15 

were increased during gametocyte development. Ap2-g shows expected expression during 

asexual stages of development (Figure 2.6). Many ApiAP2’s showed discrete increases during 

stage I to III intervals such as pf3d7_0611200, pf3d7_0934400, pf3d7_1222400, 

pf3d7_1317200 and pf3d7_1408200, of which the latter two have been validated with 

knockout studies in rodent malaria134. Stably increased transcript levels for six ApiAP2’s 

appear to be maintained during stage I to V (pf3d7_0404100, pf3d7_0516800, 

pf3d7_0802100, pf3d7_1350900, pf3d7_1429200 and pf3d7_1449500. Late-stage 

gametocytes associated ApiAP2’s showed pf3d7_1143100, pf3d7_1239200 and 

pf3d7_0613800 as increased during stage IV and V. pf3d7_1143100 expression was shown 

to be translationally repressed in P. berghei gametocytes134. These transcription factors are 

therefore more likely to be functionally relevant during gamete stages in the parasite.  

 
Figure 2.6: Expression of ApiAP2 during gametocyte development.  
ApiAP2 transcription factors increased during gametocyte development. Gene ids are abbreviated as 

ApiAP2: followed by gene id. A = asexual stages, I = stage I, II = stage II, III = stage III, IV = stage IV 

and V = stage V.  

 

Association of functional relevance is these ApiAP2’s was done by incorporating GRENITS 

along with co-expressed gene sets. For pf3d7_0611200, a total of 314 genes co-expressed 

and 223 anti-correlated out of the proposed targets from the network (Figure 2.7). Gene 

ontology for anti-correlated targets shows these genes to mostly related to host invasion 

processes while co-expressed targets are implicated in RNA metabolism. Motif enrichment for 

116 genes showed a TGCAC motif (P = 5.5e− 13, Figure 2.7) of which 100 were anti-correlated, 

indicating a repressive role. This motif is similar to the GTGCAC motif in AP2-I which could 
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suggest the role in the repression of invasion genes during gametocyte development by 

pf3d7_0611200. The second important ApiAP2 during gametocyte early development is 

pf3d7_1317200, with 21 targets in cell cycle processes such as DNA replication and 

chromosome organization. Unlike its ortholog in P. berghei (AP2-G3), no female specific 

enriched targets were found. Two ApiAP2’s which are increased during stage I-V with 

pf3d7_0934400 showing anti-correlated targets mostly (27/37 targets), indicating a possible 

need for a repressive role.   

  

 
Figure 2.7: Specific regulatory elements contribute towards gametocytogenesis.  
Highly connected ApiAP2 transcription factors that were identified as regulators were grouped by days 

on which they peak in transcript abundance (pink areas). Possible target genes were also highlighted 

from genes containing transcription factor binding sites (indicated on graphs) as well as from functional 

data indicating target genes for AP2-G. 

 

2.4 Discussion: 
 

The use of GRN analysis in Plasmodium research has been relatively scarce, while other 

fields have benefitted from this line of inferential reasoning. Many experimental investigations 

regarding regulatory mechanism and co-expression studies have been conducted, but the 

specific application of GRNs to these types of datasets are uncommon. Here, the study 

primarily focused on asexual proliferation and sexual differentiative development occurring in 

two different life phases of the parasite with the aim of determining candidates involved in 

regulating these developments. The global GRN, however, consolidates both these 

developmental phases while expanding on the number of evaluations conducted. This 

produced a large body of data in addition to the transcriptomes themselves and all aspects 
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these data cannot be discussed in detail but should rather be focused to select candidates of 

importance.  

 

The use of dynamic Bayesian networks contributed to interesting findings for both IDC and 

gametocyte phases of development94,95. The role of Ca2+ signalling cascades with CDPK4, 

PKAc, PKAr, PK2 and PK5 were interconnected with transcription factors such as MYB1, 

ApiAP2’s as well as epigenetic modifiers such as SET9 and SAP18. Constructing a targeted 

network through this approach using specific cell cycle re-entry points as a framework in 

conjunction with a high-resolution time course dataset, provided a unique and interesting 

method to investigate gene regulation in the parasite. This inference of directional 

associations, underpins the cell cycle cascade, showing the power and strength of GRNs in 

gene regulation research.  

 

Differentiation during gametocyte development required a less directed approach, were 

inferring relevant biological features from established data sources such as STRING and a 

gametocyte time course produced interesting insights into transitions occurring during this 

phase. Given the more limited granularity of the gametocyte time course (fewer time points), 

the STRING network reduced the data to a simplified network highlighting key transitions 

which occur during gametocyte maturation. The associated morphological and physiological 

change in conversion to gametocytes occurs through activation of basic energy and 

macromolecule metabolism. Processes like glycolysis, the pentose phosphate pathway and 

hemoglobin catabolism are rapidly decreased as the gametocytes progress to stage II in 

development105 and this is mimicked on the transcriptional level. Fatty acid biosynthesis 

seems to also be a hallmark of gametocyte development, with a number of genes involved in 

fatty acid biosynthesis in the apicoplast135 being expressed throughout development. The 

increase of genes involved in the TCA cycle and oxidative phosphorylation also underline the 

importance of the increased mitochondrial cristae development in gametocytes14,123,136. 

 

Overall, this overview of the lifecycle highlighted a few key points in differentiation: the 

transition from stage I-II demarcates the preparation for the rapid transition to S-phase the 

parasite will undergo in the mosquito, with nucleotide metabolism and chromatin modification 

evident in stage IIa-IIb gametocytes. Subsequently, genes involved in chromatin modification 

and DNA recombination are more expressed in stage II-IV gametocytes. The early stages of 

gametocyte development additionally support sexual differentiation, with male sex-specific 

genes increasing in expression earlier (stage I-II) than female-specific genes (stage II-III)22, 

corresponding to a slightly longer maturation time for female gametocytes137. From stage III 

onwards, the gametocytes are characterized by genes involved in transmission stages, 
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including those involved in meiotic DNA recombination and repair as well as entry into host 

and locomotion. The set of genes increased in expression during stage IV-V of development 

that are enriched for genes involved in entry into host and locomotion does support the 

transcription of genes involved in later stages of sexual development22. Finally, late stage V 

gametocytes ultimately have only a few essential metabolic processes activated15,22,138, none 

of which are focused on energy metabolism. This results in a  picture of a hypoactive stage V 

gametocyte, resulting in a reduced response to most drugs targeting metabolic processes and 

macromolecular synthesis139,140. This stage is characterized by a lull in transcriptional activity 

compared to the previous stages, with 1533 genes differentially expressed during this stage, 

the majority (802) being decreased in expression. The metabolic processes functionally 

enriched in gametocytes, fatty acid storage and the TCA cycle also typically characterize 

microbial quiescent cells141. Transcriptional quiescence regulators characterized in 

Saccharomyces cerevisiae, GSK3 and PKB142 are increased in expression, while active 

cellular marker PKA is decreased in expression during gametocyte development.  

 

Bayesian dynamic network analysis further resolved many of the ApiAP2s involved in driving 

gametocytogenesis. The expression of ApiAP2s was resolved previously for gametocyte 

development105, however target genes for these transcription factors remains an open 

question. Many target genes for ApiAP2s were resolved as well as an ARID domain protein, 

which is considered a putative transcription factor. The transcriptional regulation of P. 

falciparum by ApiAP2s downstream of AP2-G shows a potential cascade of regulation during 

gametocytogenesis. The role of AP2-G2 and pf3d7_0611200 in repressing transcription of 

asexual targets during gametocyte development are particularly interesting. 

 

The use of GRNs were therefore important to define novel regulatory elements associated 

with the control of proliferation processes in P. falciparum. The insights produced through 

GRN construction proved a valuable resource, reducing the noise of data interpretation 

thorough prioritizing interaction sets throughout the time courses. Such patterns of probable 

causal relationships would have been hard to discern through methods outside the GRN 

space. Indeed, clustering and other approaches to evaluate the data as unsupervised 

methods are useful only to define general patterns for the data, but could not provide much 

information about the relationship between data points. GRNs produce quantified relationships 

between data points, which are more informative guides for understanding relationships in the 

data. These considerations were the key motivations behind using GRNs in parasite research 

for this chapter. 
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The fruitfulness of using GRNs really presented in how the network analysis were deployed. 

With a few well-plannedexperimental designs, such as the cell cycle arrest, we could evaluate 

a selection of interesting candidate genes based on their expression response following cell 

cycle re-entry and the known properties of the genes (kinases, transcription factors etc…). 

Often, the most complex part of the analysis is candidate selection. Transcription factors are 

the usual candidates of any GRN, but they are not the only genes which impact gene 

expression. Narrowing this list of candidates requires special consideration, such as the 

availability of known properties for the genes i.e. is there a biological basis for suspecting a 

regulatory role. Inclusion of irrelevant candidate genes (genes which might not be able to 

regulate or impact on gene expression) may introduce unnecessary noise and mislead the 

algorithms. Effectively this “boils down” to using proper feature selection and not constraining 

the model with erroneous artifacts which impede the analysis. This is where the arrest and re-

entry experiment helped to guide the feature selection proses. We had fewer initiatives with 

the gametocyte candidates, thus we chiefly kept the GRENITS analysis to known transcription 

factors.  

 

This strategy proved successful, developing two high quality networks for the different life 

phases of the parasite development. The probabilistic manner with which GRENITS resolved 

the relationships made the interpretations relatively intuitive and easy. Comparisons of the 

probability vs strength outputs as produced by GRENITS was also a necessary step to 

determine appropriate thresholding of subnetwork109. Once an observable divergence in the 

probability/strength relationship becomes clear, thresholding will be relatively easy to assign 

and meaningful probabilities can be filtered. Interpretations and inclusion of STRING data 

often required more considerations. It’s not always clear from the STRING network how the 

data were derived. For example it’s not always clear which transcriptomic data was used in 

the co-expression scores field or even more ambiguous the text-mining (association based) 

abstract scores. It’s not clear how trusted some of the features are for the parasite biology, 

which is why we opted for inclusion of selected features and recalculated the combined scores 

(following their recommendations) to produce a more stringent network. This approach may 

have been overly stringent as we excluded a larger number of connections, but considering 

the unknown variable of the contributing data, we rather adopted a cautious approach in this 

case.   

 

The insights obtained from this GRN based approached may have been difficult to elucidate 

otherwise, e.g. calcium signalling cascades with targets during the cell cycle progression and 

the role of repression for AP2-G2 during sexual development. The connections would have 

been hard to derive without GRNs. However, some difficulties where present for this approach 
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such as the scalability of DBNs73,109. We had to limit the analysis drastically towards essential 

comparisons, as the size of the proposed analysis would have been difficult to compute. This 

meant that we had to be more selective in our approach, which would imply many more missed 

connections which we could not obtain. The speed of the DBNs constructed here may in part 

be the result of the R programming language itself, given that the use of interpretated 

languages generally suffer memory and performance issues143 and opting for or constructing 

a pipeline in C or other compiler based languages may have improved the computational 

efficiency as well as scalability. However, due to the extensive search function approaches 

required to define the underlying Bayesian networks (functions like MCMC) these algorithms 

are known for their excessive computation time73. This would always be a constraint in this 

approach. Even with these costly computations, we’ve shown strong features throughout the 

data and present a case for the use of GRNs in P. falciparum research.  

 

We used limited resource networks such as GRENTIS and STRING in this chapter to guide 

questions regarding key regulators in specific cellular contexts. However, adapting these 

approaches to a wider, more encompassing, unsupervised approach such as a weighted co-

expression network in chapter 3, allows expansion of the scope of investigations into the 

relevance of more potential regulatory candidate genes, particularly for gametocyte 

maturation. 
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Chapter 3 
 

New insights into the sexual transcriptome of Plasmodium falciparum through high-
resolution amplification-free RNA-seq and comprehensive gene regulatory network 

analysis 

 

3.1 Introduction 
 

The Plasmodium parasite completes its first phase of human infection in the liver before 

completing an indeterminate number of intraerythrocytic asexual developmental cycles. It is 

this 48 h asexual developmental cycle, where parasites mature from rings to trophozoites and 

finally schizonts to produce daughter merozoites, that gives rise to malaria symptoms and can 

lead to death in an untreated patient. However, to continue its life cycle beyond the human 

host, the parasite also forms sexual stages called gametocytes, the mature forms of which are 

the only stage that can transmit to the obligate Anopheles mosquito host. Sexual stage 

differentiation in the most lethal human malaria parasite, Plasmodium falciparum, is uniquely 

extended over a 10-14 day period144 and is marked by development through five 

morphologically distinct developmental stages (stage I-V). This stage-specific transition is 

solely associated with this species of parasite, giving it its name based on the falciform shape 

of mature stage V gametocytes15.  

 

The ability of P. falciparum to transition between biologically distinct stages is mediated by 

tight control of gene expression. The transcriptome of both asexual parasites20 as well as 

gametocytes95 varies with every stage and most genes show conserved peak expression 

associated with specific life cycle stages20,48,49,95,105. This process is transcriptionally controlled 

by several mechanisms that are somewhat clarified for asexual development including the 

involvement of a small family of putative transcription factors106, RNA decay mechanisms48 

and epigenetic mechanisms28,33,45,48,145. The functionally-probed family of transcription factors 

consist of only 27 members (ApiAP2 family, some of which are putative), which seems an 

unlikely small number of transcription factors to account for the regulation of all ~5500 genes 

known in the parasite106. An additional ~73 DNA-interacting proteins with likely transcription 

factor/associated domains have been identified primarily through in silico protein domain 

discovery and alignment strategies146. It is likely that these factors and even more may be 

involved in regulating transcripts. However, our understanding of processes driving 

transcriptional changes during stage transition associated with gametocytogenesis is limited 

to dynamic descriptors of the transcriptome from cDNA microarray data95 and the chromatin 
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proteome147 or to only the processes involved in the commitment steps changing asexual 

parasites into early stage gametocytes33,44,45. 

 

The application of RNA-seq technology has refined our understanding of gene models in the 

parasite97, and identified the majority of splice sites including alternative splice sites. Extension 

of these investigations to single cell RNA-seq (scRNA-seq) yielded detailed insights into the 

early mechanisms employed by ring-stage asexual parasites to commit to sexual 

development44,148. The development of an unbiased RNA-seq protocol, directional 

amplification-free RNA-seq (DAFT-seq), has opened up avenues for the accurate evaluation 

of the P. falciparum transcriptome, even in light of the extraordinarily high AT-content of the 

genome (up to 95% in non-coding regions, compared to ~80% in gene bodies)25. Indeed, with 

this technology, the full power of RNA-seq over hybridisation-based transcriptomics is evident 

in the accurate description of non-coding RNAs (ncRNA) and long non-coding RNAs (lncRNA) 

as additional level of gene regulation used by the parasite25. Whilst previous RNA-seq 

reports43,149–154 identified a large number of ncRNAs, the majority of these originate from AT-

rich regions that were not accurately sequenced and assembled and as such have been 

discarded in reannotation processes25. The measure of known lncRNAs may be quantified 

with DNA-microarray, however due to the inherent nature of the platform, novel lncRNAs will 

be excluded. These lncRNAs can occur in two variants: intragenic and intergenic. For 

instance, intragenic lncRNA (often referred to as anti-sense RNA, asRNA) have been shown 

to suppress expression of an early driver of gametocytogenesis, gametocyte development 

protein 1 (GDV1)45. The mechanism by which asRNA silence gene expression in Plasmodium 

is still poorly understood as the parasite lacks dicer enzymes which are needed for RNA 

interference silencing mechanisms. Intergenic lncRNAs have also been implicated in gene 

regulation for the parasite such is the case with the telomere-associated long non-coding 

RNAs (lncRNA-TARE). As their names suggests these intergenic lncRNAs are situated near 

the telomeric regions of chromosomes and have been proposed to interfere with some 

members of the virulence-related var family of genes155. The proposed model for lncRNA-

TARE is to interfere directly with var gene promoters or indirectly by recruiting histone 

modifying enzymes155. 

 

Here, we applied DAFT-seq to provide an in-depth evaluation of gene regulatory factors during 

the complete process of gametocyte development in P. falciparum. We produced a complete 

and high-resolution time course RNA-seq transcriptome for P. falciparum gametocyte 

development over a 16-day period, from commitment to gametocytogenesis through each 

stage of development and differentiation to the fully mature stage V gametocytes. Integration 

of this complete gametocyte dataset with existing gametocyte and asexual dataset produced 
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a large dataset spanning multiple stages of parasite development for comparison. We use 

these data to leverage the power of a phase-contrasting development model to investigate 

gametocyte development and gene regulation thereof. To this end, a co-expression network 

was constructed to quantify the relationship between genes throughout gametocytogenesis 

and contrast this to processes required during asexual proliferation. 

 

3.2 Methods 
 

3.2.1 Parasite culture, sampling, and RNA isolation 

 

Asexual P. falciparum NF54 parasite cultures (NF54-pfs16-GFP-Luc156) were maintained at 

37°C in human erythrocytes at 5-8% parasitemia and 5% haematocrit in RPMI 1640 medium 

supplemented with 25 mM HEPES, 0.2 % D-glucose, 200 μM hypoxanthine, 0.2% sodium 

bicarbonate, 24 μg/ml gentamicin with 0.5 % AlbuMAX® II and incubated under hypoxic 

conditions (90% N2, 5% O2, and 5% CO2)115. Synchronous asexual cultures (>95% 

synchronized ring-stage parasites) were obtained by three consecutive cycles of treatment 

with 5% v/v D-sorbitol, each 6-8 h apart. Gametocytogenesis was induced by through 

concurrent nutrient starvation and a decrease of haematocrit as described95,115. All cultures 

were maintained with daily medium changes and monitored with Giemsa-stained thin smear 

microscopy and parasite stage distribution determined by counting ≥100 parasites per day. 

Parasite samples (30 ml each of 2-3% gametocytaemia, 4-6% haematocrit) were harvested 

daily for RNA-seq analysis from two days prior to induction (day -2) and for 13 days post-

induction. Parasites from samples harvested on days -2 to 7 were enriched via 0.01% w/v 

saponin treatment for 3 min at 22°C while samples from day 8 to 13 were enriched for late-

stage gametocytes via density centrifugation using Nycoprep 1.077 cushions (Axis-Shield). 

All parasite samples were washed with phosphate-buffered saline before storage at -80˚C until 

RNA was isolated. Total RNA was isolated from each parasite pellet with a combination of 

TriZol treatment and using a Qiagen RNeasy kit (Qiagen, Germany) as before94. The quantity, 

purity and integrity of the RNA were evaluated by agarose gel electrophoresis and on a ND-

2000 spectrophotometer (Thermo Scientific, USA).  
  



 71 

3.2.2 Directional, amplification-free RNA-sequencing  

3.2.2.1 DAFT-seq library 

DAFT-seq was performed essentially as described in25. Poly-adenylated RNA (mRNA) was 

selected and captured using magnetic oligo-d(T) beads and purified. Full-length mRNA was 

reverse transcribed using Superscript II (Life Science), primed using oligo d(T) primers. 

Second strand cDNA synthesis used dUTP to encode directional information. The resulting 

cDNA was fragmented using a Covaris AFA sonicator. A “with-bead” protocol was used for 

dA-tailing, end repair and adapter ligation (reagents from NEB) using “PCR-free” barcoded 

sequencing adaptors (Bio Scientific). After 2 rounds of solid phase reversible immobilization 

(SPRI) clean-up the libraries were eluted in EB buffer and USER enzyme mix (NEB) was used 

to digest the second strand cDNA, generating directional libraries. Sequencing was performed 

on an Illumina HiSeq 2000 generating paired-end reads, at the Wellcome Trust Sanger 

Institute (WTSI), UK25.  

 

3.2.2.2 DAFT-seq primary data analysis 

Reads were trimmed to 75 bp followed by alignment filter based read flagging. Reads that 

were PCR duplicates, mapped to multiple locations on the genome and improperly paired 

reads where discarded. Read mapping was done against the P. falciparum genome 3D7 

version release 34 (www.genedb.org) using TopHat2157, followed by minimum mapping quality 

threshold of 30 (samtools 0.1.19). Read count and FPKM normalization were calculated using 

in-house Bash and Perl scripts developed by Lia Chappell (WTSI). Read quantification and 

normalization was comparable to quantification of an alignment free method such as 

Kallisto158. Whole transcriptome Pearson correlations of sample time point where performed 

with filtering for strongly correlated values (Pearson R2 > 0.7, with the exception of day -2: 

lower correlation due to low RNA abundance). The DAFT-seq dataset was evaluated for 

quality of reads using fastqc where per base sequence quality scores were primarily used to 

determine quality of reads. Post-read mapping to the P. falciparum genome the number of 

mapped reads compared to unmapped reads was used a coverage indicator. 

 

3.2.3 Custom exploration of the gametocyte transcriptome  

3.2.3.1 Whole transcriptome clustering and comparisons with established gametocyte 
datasets: 

Previously published datasets were used to allow a full interrogation of both the 

intraerythrocytic development cycle (IDC) as well as gametocyte transcriptomes all from RNA-

seq platforms to compare to the in-house generated DAFT-seq time course data. Datasets 
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were mapped from raw sequence reads as previously described. Genes with no signal/reads 

in more than 80% of the sample set were removed to ensure sufficient signal for normalization. 

Between sample normalizations of read counts were evaluated using a standard upper 

quantile normalizations (DESeq2,159), Limma voom 160 and variance stabilizing transformation 

(VST) (DESeq2). 

 

The total transcriptome FPKM values from the DAFT-seq dataset as well as from the 

previously published datasets were scaled as z-scores and clustered both hierarchically and 

through K means clustering. Clusters were evaluated for their relevance during specific stages 

of the parasite. Various genes relevant to gametocyte maturation from known 

publications21,95,105 were used to validate the dataset including a previous study of ours on 

gametocyte maturation (microarray). A panel of four genes were used in qPCR validation of 

the samples (pf3d7_1252200, pf3d7_1302100, pf3d7_1104900 and pf3d7_0525800). 

 

3.2.3.2 Weighted co-expression network analysis and intramodular hub gene identification 

To identify sets of co-expressed genes during IDC and gametocytes stages respectively, the 

construction of a weighted gene co-expression network was performed using WGCNA69. 

Samples were evaluated for outliers by means of hierarchical clustering and soft threshold 

power coefficient was determined at 16 for scale-free topology (Supplementary Figure 1.1). 

From this adjacency matrix a topological overlap similarity matrix (TOM) was computed and 

the following dissimilarity matrix (1-TOM). Automatic block-wise module detection was used 

at a merge height of 0.3 and a minimum module size of 30 genes, which yielded 12 modules. 

In order to capture positively co-expressed genes, the network was created as a signed hybrid 

network. Singed hybrid networks consider only positively correlated genes. Uncorrelated 

modules (genes which showed no co-expression with other genes) were removed from that 

dataset for co-expression analysis. Manual curation of these genes showed their expression 

to be extremely variable over the datasets tested (Supplementary Figure 1.2). The remaining 

11 modules were included in networks with layouts computed using the igraph package161 

Fructerman-Reingold algorithm for weighted network layouts of the strongest 5% edges. 

Visualization of networks were done using the ggplots2162 in R and igraph. The strongest 

features (genes) for module identity (intramodular hub genes) were extracted for all 11 

modules. Module eigengene correlations for each gene and the modular interconnectivity was 

calculated per module. The upper 5% for each were considered intramodular hub genes.  
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3.2.3.3 Module assignment to stage category data 

Pearson correlations of module eigengene values (as defined in69) was used to categorise 

stage data into 4 broad stage categories: gametocyte (G), ring-trophozoite (RT), trophozoite-

schizont (TS) and mixed gametocyte and asexual (Mix). A “one hot encoder” approach with 

binary encoding of the different categories ensured the categorical data remained non-

continuous. Correlation of modules to stages was used to assign modules to their respective 

stages. A TS/G category was created for dual correlations where modules were equally 

correlated to two stage categories. 

 

3.2.4 Stage assignment of genes with generalized linear modelling: 

 

Genes were evaluated for stage-associated strength through generalized linear modelling 

(GLM). Genes were tested against each stage category and P-values for the total set of genes 

were adjusted (Bonferroni), p.adj<0.05. Predictor genes were evaluated for unique occurrence 

in stage (post-filtering) and visually inspected through heatmapping and hierarchical 

clustering. 

 

Stage-associated genes derived from GLM were assessed for accuracy using a supervised 

machine learning approach. Four stage categories: ring-trophozoite (RT), trophozoite-

schizont (TS), mixed (mix) and gametocyte (G) were used to predict the specificity of genes. 

Two sets of evaluations were conducted: testing using the full RNA-seq dataset used in the 

co-expression network (VST applied) and a second round of testing including two microarray 

datasets. For the second test, both RNA-seq and microarray data were transformed into -1, 0 

or 1 depending on their presence in the upper, middle and lower quartiles of the datasets 

following mean centered normalization. This approach was used as decision tree algorithms 

are sensitive to positional rankings of the data and RNA-seq with microarray are not directly 

compatible with regards to exact transcript abundance positions. The model was trained using 

scikit-learn GradientBoostingClassifier algorithm with 5000 estimates. Data was split into a 

70:30 training-test ratio and 10x cross validation was used to assess model performance on 

the training set using cross_val_predict from scikit-learn. Test sets were evaluated simply for 

accuracy. 
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3.2.5 Text mining and filtering of regulatory machinery from current annotations 

 

Nuclear genes were cross-referenced for gene ontology terms and assigned to each gene, 

terms sourced form PlasmoDB (www.plasmodb.org) and ApicoTFdb146 for added information 

on transcription factor elements. Unknown proteins from this list was also submitted to 

InterProScan163 via a programmatic interface with the RESTful API service to further cross-

reference any potential regulatory elements overlooked by current annotations. Text filtering 

using regular expression on customized search terms were used to filter genes into three 

categories: translation machinery, transcription machinery and epigenetic machinery. Genes 

were subsequently cross-referenced with modules in the co-expression network in order to 

polarize the machinery mechanisms throughout the dataset. 

 

3.2.6 Evaluation of intergenic long non-coding RNA (lncRNA) and adjacent 
neighbouring gene pairs through co-expression data 

 

For evaluation of lncRNA we required paired-end datasets and a modification to the 

correlations statistic to capture any negatively correlated relationships as lncRNA may exhibit 

repressive or expression interfering properties. Two datasets were kept for this analysis as 

their library preparations were compatible for the analysis, 4 datasets were removed due to 

either unpaired reads or unsuitable library preparation. The modification to the correlation 

statistic is through means of csuWGCNA164 network which takes absolute values of 

correlations between pair thus maintaining negatively correlated pairs (equations 1-2).  

 

[1] Signed aij = |(1+cor(xi,xj))/2|β 

[2] csu aij = |(1+|cor(xi,xj))|/2|β 

 

Where a denotes adjacency values (weighted correlations) with i and j for respective gene 

pairs. Cor denotes correlations and β denotes the power coefficient required to achieve scale-

free topology. Furthermore, the predictive nature of lncRNA for correlated nuclear genes were 

evaluated through use of generalized linear models (base R: glm), and Bonferroni adjusted P-

values were calculated. The lncRNA data was filtered for weighted correlations > 0.4 and 

adjusted P-values < 0.001 producing a subnetwork of lncRNA genes and their subsequent 

target genes. Neighbouring gene pairs were filtered into three configurations: Tail-to-head, 

Head-to-head and Tail-to-tail for matched gene pairs with csuWGCNA values assigned. For 

the identification of intragenic antisense RNA (asRNA), our RNA-seq dataset was probed for 
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asRNA and a log2FC (asRNA + 1/mRNA + 1) was calculated and clustered (k-means, with k 

= 9). 

 

3.3 Results 
 

3.3.1 High resolution transcriptome from DAFT-seq exhibit clear phase differentiation 
in the parasite development: 

 

3.3.1.1 RNA-seq read quality and mapping 

RNA sampling was successfully performed to allow subsequent deep sequencing of the 

transcriptome. This was performed for all 16 samples spanning asexual parasites and 

commitment to gametocytogenesis and days 1-13 of gametocytogenesis for all stages of 

gametocytes. A base pair read length of 75 bp was submitted to FastQC for each of the 16 

samples. The base pair quality per mapped reads is classified as high-quality for all the 

samples evaluated (average quality scores of >28) (Figure 3.1A). Base pair composition for 

each read is shown as an average for all mapped reads over all samples in Figure 3.1B. As 

expected, the GC content of the reads are relatively low, mimicking the parasite genome’s low 

GC content (~19%)165. Each sample had over ~80% mapped reads with most samples at 

~90% (Figure 3.1C).  
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Figure 3. 1: RNA-seq quality statistics.  
A) Average base pair quality scores for all mapped reads across all samples as produced by FastQC 

reports. Quality ranges are colour coded: green = high quality with average quality scores >28, yellow 

= moderate quality with scores >20 and red = low quality <20. Where standard deviation not visible, it 

falls with the datapoint symbol. B) Average base pair composition for all samples, all four nucleotides 

are indicated. C) Percentage mapped reads per sample. 

 

3.3.1.2 Sample stage composition and sequence distribution 

Gametocytogenesis, development and differentiation were morphologically monitored over a 

16-day period that covers induction of asexual parasites for commitment to 

gametocytogenesis (day -3), to the first appearance of stage I gametocytes (day 1) through to 

mature stage V gametocytes on day 13 (Figure 3.2A). Samples for DAFT-seq were taken daily 

during this entire time course and stage composition determined to recapitulate expected 

profiles in each stage (Figure 3.2A)95. Morphological evaluation of parasite stage composition 

at day 3 show an 81% gametocyte population and 97% at day 4, whereafter only gametocytes 

were present in various stages from day 5 onwards (Figure 3.2B). Moreover, from days 3 to 

13, the gametocyte stage-distribution was evident with maturation from stage I gametocytes 

on day 3 progressing to a majority stage II population by day 5, and stage III 24 h later. Late-

stage gametocytes were evident from day 7 and by day 13, gametocytes were mostly mature 

stage Vs. The dynamics of this progression of gametocyte development was reproducible over 

A B

C
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replicates and mimicked in its entirety a previous profile95 on this strain of P. falciparum. This 

provided confidence in the stage coverage provided with our sampling strategy. 

 

The subsequent global transcriptomes obtained for each sample from the DAFT-seq strategy 

shows a comparable sequence coverage distribution throughout the 16 samples suggesting 

equal extraction and sequencing of transcripts during isolation (Figure 3.2C). The distribution 

of mapped reads throughout the dataset exhibits a clear comparative range between samples 

with only trophozoites illustrating a higher range in distribution as expected. Pearson 

correlation between the DAFT-seq data from the daily sample sets confirm the morphological 

distribution, with days 3-4 showing the highest heterogeneity, whilst pure gametocyte 

populations corresponding to intermediate and late-stage development is clearly separated 

from asexual development, with a strong sample clique between days 5-13 (Figure 3.2D). 
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Figure 3.2: Inclusion of high-resolution gametocyte development transcriptome through RNA-
seq based platforms.  
A) Sampling and culturing strategy for in-house DAFT-seq transcriptome capturing induction of 

gametocytes to maturation. Daily sampling done with induction started at day -3 and sampling from day 

-2 to 13 and parasites binned into stages based on Giemsa stained microscopic evaluation95. B) Stage 

composition of daily sampling from in-house dataset from day -2 to 13. C) Distribution of log2(FPKM + 

1) values for each daily sampling with indicated median. D) Whole transcriptome sample Pearson 

correlations represented as a network with nodes indicating sample day and edges the correlation 

strengths. Figure colour legend indicates parasite stage: R = ring stages, T = trophozoite, S = schizont 

and gametocyte maturation indicated as roman numerals I-V. 

 

3.3.1.3 Gametocyte signatures present strongly in the sampled transcriptome 

The DAFT-seq transcriptomes for the full gametocyte developmental programme was 

compared to previous cDNA microarray transcriptomes95. Similar deviation in the entire 

transcriptome from asexual parasites to gametocytes were observed in the DAFT-seq 

transcriptome compared to our transcriptomic data from cDNA microarrays95. We identified 

583 transcripts that showed uniquely and specifically increased expression profiles during 

gametocyte development in comparison to asexual parasites (Figure 3.3).  
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Figure 3. 3: Gametocyte associated genes reveals expected expression trends throughout the 
time course data.  

A sample of 583 genes were established to be gametocyte associated genes95 and the expression 

mean was modelled using loess fit. Sample distribution of genes are illustrated as box-whisker plots. 

Box colour ranges shows progression of sampling through time points, from blues (asexual samples) 

to reds (mature gametocytes). Expression values are treated as Z-scores of FPKM. 

 

In addition, our confidence in our ability to pick out gametocyte-related transcripts is also 

bolstered by identifying 37/40 “gold standard” gametocyte genes21 that show increasing in 

transcript abundance in our RNA-seq dataset (Figure 3.4). Three of the 40 genes represented 

in Figure 3.4 (pf3d7_1302100, pf3d7_1477300 and pf3d7_1253000) are present during early 

stages of gametocyte development only. The concordance with previously established 

gametocyte findings here recapitulates the fidelity of the DAFT-seq transcriptome dataset as 

a strong representation of gametocyte development in the parasite. 
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Figure 3.4: Meerstein-Kessel gold standard of sexual development genes for the in-house RNA-
seq dataset.  
A total of 40 genes represented. 

 

These data show consistent gametocyte sampling and the presence of strong gametocyte 

signals in concordance with previous studies, supporting subsequent mining of this dataset. 

Typical advantages of RNA-seq over that of microarray data, is the potential discovery of novel 

ncRNA and the investigation of alternative splicing, although the latter is not typically easily 

investigated with base pair reads of 75 bp. TSS discovery, however, requires a more stringent 

sequencing process that protects the 5’ ends of the transcript, which the DAFT-seq applied 

here does not perform and therefore TSS discovery could not be applied.  
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3.3.2 Normalisation approaches across numerous datasets yield variance stabilising 
transformation (VST) as the most appropriate 

 

Given the availability of RNA-seq dataset for P. falciparum, integration of data would lend 

greater statistical power in downstream analysis between the developmental phases. Samples 

in addition to our gametocyte time course dataset were included from public repositories such 

as PlasmoDB.org, EMBL and GEO. Data from these repositories were chosen based on 

several criteria: 1) the data had to be from bulk RNA-seq experiments; 2) it had to include 

different parasite stages in both sexual and asexual phases of development. Numerous IDC 

RNA-seq datasets were available for use, however not many bulk RNA-seq datasets exist for 

gametocytes and the available gametocyte datasets are for only specific stages, never for the 

entire spectrum of gametocyte development. There was therefore a heavy bias towards 

inclusion of RNA-seq data from asexual stages. Ultimately, data from 49 samples were 

integrated into a complete dataset (Table 3.1) to allow the construction of a weighted co-

expression network.  

 
Table 3. 1: Datasets used for co-expression network with a total of 49 samples through all 
datasets.  

Dataset description Abbreviation Library 
type 

Sample# Reference Access 

Hoeijmakers IDC (5-40 
h) 

HM Unpaired-
end 

8 - (PlasmoDb.org) 

Siegel IDC (10-40 hr) SL Paired-
end 

4 153 ERP001849 

Broadbent IDC (8-40 h) BB Paired-
end 

14 43 GSE57439 

López-Barragán 
(S,LT,GII,GV) 

LB Paired-
end 

4 149 (PlasmoDb.org) 

Lasonder (GV) LS Unpaired-
end 

3 22 GSE75795 

Van Wyk 
(R,T,GI,GII,GIII,GIV,GV) 

RW Paired-
end 

16 In-house - 

Total   49   
S: schizont, LT: late trophozoites, R: ring stages, for GI-GV: G = gametocyte and I-V indicate 
stage. 
 

Cross-sample comparisons are only feasible following appropriate normalisation of the 

dataset to create comparable data ranges between samples in the entire dataset. Four main 

normalisation strategies were evaluated to successfully integrate the data from the various 

sources (Figure 3.5). A log2 transformation of read counts are included as a normalisation 

reference point, the real comparison focuses on upper quantile (UQ), limma’s voom and VST 
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from DESeq2. Upper quantile normalisation, which is considered as a library size 

normalisation strategy, produced a widely varying median across samples sets observed. 

Transformations with either limma voom or VST are usually recommended for co-expression 

network analysis69, and both shows comparable normalisation but voom does have less 

uniformity between samples. For this reason, VST appears to be the more appropriate tool for 

read count normalisation between samples. 

 

 
Figure 3.5: Dataset normalisation strategies.  

Log2 transformation, upper quantile normalisation, limma voom and VST from DESeq2. Sample keys: 

BB = Broadbent, HM = Hoeijmakers, LB = López-Barragán, LS = Lasonder, SL = Siegel, RW = van 

Wyk. Each dataset is illustrated by a unique and corresponding colour: beige = BB, dark brown = HM, 

turquoise = LB, sea green = LS, orange = SL and dark green = RW 

 

3.3.3 Correlation of the total dataset samples yield clear stage categories for general 
use and assignment of clusters 

 

Substantial variance is observed in data collected for ‘-omics’ experiments from P. falciparum 

due to various experimental conditions used in each dataset (e.g. different sampling times and 

sequencing platforms). Variance of this nature make downstream interpretations difficult, 

whilst correcting for this variance through normalisation may improve interpretations. We 

therefore clustered the normalised data based on the stage of parasite development and total 

transcriptome correlation. We defined broad, stage-associated categories as follows: ring-
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trophozoite (RT), trophozoite-schizont (TS), gametocytes (G) and mixed (Mix) populations. 

This resulted in four clear correlation blocks (black boxes) associated with the four categories 

(Figure 3.6).  

 

 
Figure 3. 6: Sample severances through Pearson correlations classified within developmental 
blocks.  

Definition of stage categories based on sample correlations blocks (black boxes) and prior knowledge 

of sample composition. Stage category labels: G = gametocyte, RT = ring-trophozoite, TS = trophozoite-

schizont and Mix = mixture of gametocyte and asexual parasites. Datasets reference in legend. Sample 

normalized using the VST (DESeq2) approach in R. Sample keys: BB = Broadbent, HM = Hoeijmakers, 

LB = López-Barragán, LS = Lasonder, SL = Siegel, RVW = van Wyk 

 

Interestingly, the gametocyte stage II and late trophozoite stage from the López-Barragán 

dataset formed a correlation block which was more strongly associated with the TS stage 

samples of the other datasets. This is most likely due to a mix of asexual and sexual stages 

present in these samples. Mixed sample populations (particularly LB_LT, LB_GII and days 3-

4) introduced a significant amount of noise in the dataset but this is considered fortuitous in 

terms of stage-category assignment of genes. Noise reduction by removal of mixed sample 

populations will increase the likelihood of a type I error, while inclusion skews towards a type 

II error. Since we are interested in discovering genes which most significantly assign to a 
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particular stage-associated category, type II errors are generally more acceptable. Samples 

within the TS block may very well contain early-stage gametocyte samples, however, the 

signal from these gametocytes is expected to be heavily masked by the number of asexual 

parasites populating each time point. A clear gametocyte block is seen for late-stage 

gametocytes (GIII to GV) that is completely dissociated from all of the other sample categories. 

A large RT stage block is present in the correlation matrix. Formation of clear correlation 

blocks removes some of the biases in assigning samples to specific stages across multiple 

datasets. Downstream interpretations must be mindfully performed with these stage 

categories. 

 

After normalisation supported clear stage separation in sampling across multiple datasets, 

further probing of the data can be performed. The proposed method for producing more 

insights into the relationships between genes, was through the construction of a WGCNA 

GRN.  

 

3.3.4 WGCNA highlights a strong bimodal distribution of co-expressed genes for sexual 
and asexual development in P. falciparum 

 

Validation of gametocyte sampling both morphologically and transcriptomically, secures a 

large contributing dataset towards gametocyte gene expression with RNA-seq. Since our 

dataset includes all morphologically distinct stages of gametocyte development, we can 

include this with existing data to improve the statistical power of the downstream analysis. 

Integration of these data will enable clear developmental stage categories spanning both 

asexual and sexual development to be delineated but requires a global approach which can 

segment the data into relevant groupings for multiple comparisons. We therefore constructed 

an undirected, weighted co-expression network with WGCNA as a first attempt at a global 

GRN. WGCNA also includes clustering approaches, which segment the data based on 

expression signatures and captures the relationship between transcripts through weighted 

Pearson correlations.  

 

The total transcriptome for all 49 samples (5163 transcripts shared for each dataset) were 

used to construct the WGCNA, during which module discovery through clustering of correlated 

genes separate the transcripts into distinct modules. A total of 11 modules were discovered 

that spanned 4100 transcripts and covering 75% of the transcriptome. Transcripts that were 

excluded from the network showed no association with any of the modules and were denoted 

unsigned. The top 5% with strongest weighted Pearson correlations (n=3306 transcripts) were 
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used to capture the network topology with the Fructerman-Reingold algorithm (Figure 3.7A). 

The network presents with a bimodal distribution with some localised and some widely 

dispersed modules (Figure 3.7A). The WCGNA indicated the presence of intramodular hub 

genes that show high connectivity throughout the network and present with a centralized 

topology within their respective nodes. These nodes can therefore be considered as the most 

representative subsamples of their respective modules.  

 

Interestingly, the connectivity associated with the intramodular hubs resulted that these hubs, 

with their strongest interacting nodes, form a network “backbone” of 774 genes (Figure 3.7B). 

Extremely dense cliques form throughout this “backbone” network with modules 2 & 3 and 5-

7 more densely compacted and clearly separated from modules 1 & 4. Like the clustering 

data, most of the genes associated with modules 1 and 4 as is reflected in the size of these 

modules. However, this area of the bimodal network that contains modules 1 & 4 also overlaps 

with modules 9-11, which contained very few genes. The backbone network preserves the 

general topology of the overall network, which speaks to the scale-free topology nature of the 

network itself and confirms that this network for P. falciparum remains relatively constant as 

is often the case with biological networks 73, and is independent of gene set sizes.  

 

Stage category association of the modules was subsequently done using Pearson correlations 

of the modules with the respective staged categories (mixed, RT, TS or G; Figure 3.7C). 

Taking module eigengene correlations to stage categories into account, dual nature co-

expression was observed for some modules, with similar correlations occurring in more than 

one stage category (Figure 3.7C). However, distinct associations could be inferred with 

modules 1, 4 and 8-10 showing strong eigengene correlations (≥ 0.6-0.7) to stage categories 

associated to asexual RT stages, with some overlap present particularly for module 9 for TS. 

The distinction of these modules from the others implies a clear asexual pole defined by the 

WGCNA, confirming previous indications of deviation of the asexual and sexual 

transcriptomes94,95. This is extended to module 5 that is associated with TS and could provide 

the strongest representation of schizont data in this dataset. Importantly, this module is also 

associated with a bridging nature between the poles that could indicate transition from asexual 

parasites to gametocytes.   

 

Although a less pronounced correlation was observed with modules associated to gametocyte 

stages (≥0.3-0.4, module 7, 6 and 2), module 3 showed very strong and exclusive association 

with gametocytes (≥0.93, Figure 3.7D), confirming that a subset of genes differentiates and 

describe gametocytes95. These genes also show very high connectivity, implying functional 

relationships or co-regulation. To further distinguish gametocyte-associated genes and define 
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possible overlap with asexual-related genes, a separate category was defined termed TS/G 

since the correlation of modules 2 and 6 were relatively equal for both TS and G stage 

categories (Figure 3.7D). This finer delineation showed that for these genes, multi-stage 

involvement can be assigned, with little distinction between them in mature asexual stage 

parasites (TS) compared to gametocytes. This may indicate either shared importance to both 

these stages or could reflect overlap in populations of sexually committed asexual parasites 

and immature gametocytes.  
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Figure 3. 7: Weighted co-expression network analysis captures a bimodal distribution of co-
expression in developmental stages.  
A) Co-expression network with imposed gene modules (colour scale) illustrating a bimodal distribution 

of co-expressed genes. Visualization of the top 5% strongest interactions (n = 3306 out of 4158 genes). 

Larger nodes correspond to hub nodes. B) Hub genes throughout modules and their strongest 

interacting genes forming a network “backbone” of 774 genes. Hub nodes are of larger size than non-

hub nodes, colour scale indicate module membership. Edges show interactions in network (not scaled). 

Nodes were positionally declutter using a coordinate offset for clearer visualization. C) Correlation 

matrix of module eigengene values and respective stage categories. D) Correlations of modules to 

sample stage category imposed in the network topology. Stage category legend: RT = ring-trophozoite, 

TS = trophozoite-schizont, G = gametocyte and TS/G = ~equal correlations to either TS or G categories. 

Correlations for modules indicated within proximity of their topology. 

 

The functional outcomes of these modules were subsequently evaluated using gene ontology 

(GO) enrichment. Pie scatter plots (placed at module centroids) indicate enriched GO terms 
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found throughout the network topology (Figure 3.8). At the core of the gametocyte assigned 

gene modules, module 3 principally associated with the expected GO terms such as 

microtubule-based processes/movement (GO; GO:0006928; P=3.602e-10), lipid biosynthesis 

(GO; GO:0006633; P=1.514e-4) and cell motility (GO; GO:0048870; P=9.198e-4). These 

processes are all important to mature gametocytes in preparation for gamete formation and 

egress95,105. Modules 5 and 6 are both enriched for host cell entry processes (GO; 

GO:0030260; P=4.631e-20 and P=1.913e-3), that includes expression of transporters and 

surface antigens required for asexual proliferation processes including immune evasion and 

erythrocyte entry94; but also needed for host cell remodelling and entry for immature 

gametocytes to sequester in tissues such as bone marrow to allow differentiation to occur166.  

 

By contrast, module 1 which associates with RT stage categories show enrichment for 

asexual-related processes including RNA metabolic process (GO; GO:0016070; P=1.640e-

11), ribosome biogenesis (GO; GO:0042254; P=5.460e-10) and RNA processing (GO; 

GO:0006396; P=2.820e-10)49. The trophozoite-selective nature of module 2 is heavily 

reflected in the GO terms, with these pertaining almost exclusively to DNA replicative 

processes (GO; GO:0006260; P=1.369e-23). The ability of the network to segment the data 

into relevant modules within respective stage categories, as further supported by the 

underlying biology associated with these stages, provides confidence in the nature and 

accuracy of the network. It could therefore be used to delineate stage-specificity, provide 

chorological order to gene expression, and evaluate the regulatory importance of the 

connectivity. 
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Figure 3.8: Gene ontology (GO) for network modules capture through pie scatter plots and 
module density shown with ellipses.  
Pie scatter positionally placed at module topology centroids, therefore the centre where modules are 

most dense. GO terms are colour scaled as per legend description. Ellipses graphically illustrate module 

density in two-dimensional space. Only GO terms with result count>10 and P-value<0.05 were 

considered (supplementary table 1). 

 

Given stage associated module and GO analysis validations, we can further examine the 

fidelity of the network through comparisons as done for the RNA-seq dataset 

previously21,48,95,105. A comparison of the Meerstein-Kessel “gold standard” of genes 

associated with specific developmental phases, provides this added validation of module fit21. 

All of the previously described ‘gold standard’ gametocyte-related genes are associated with 

module 3 (Figure 3.9A), with only one gene, an annotated gametocyte-exported protein 

(pf3d7_1253000) not expressed in mature gametocyte stages but rather captured during early 

asexual development (RT stage category) 167. This was also observed in other gametocyte 

transcriptomes such as van Biljon et al. and Young et al.,95,105. 

 

The asexual ‘gold standard’ markers were associated with expression in asexual modules 5, 

4, 1 and 8. Two genes (pf3d7_1216600 and pf3d7_1418100), showed higher expression 

during gametocyte stages (Figure 3.9B) as well as association to gametocyte modules, 

implying that gene stage-association may therefore not be entirely solved. Barring these 

exceptions, these data support the ability and topology of the GRN to correctly assign stage 

association of genes. The question of gene stage association was however prompted by these 

exceptions and whether we need to refine our understanding of stage association for these 

data. Given that we would have to interpret the data in context of which stage of development 

this gene seems to more or less associate, evidence of the individual gene associations (not 

just group through model assignment) would be valuable for interpretations.  
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Figure 3.9: Gold standard asexual and sexual gene sets from Meerstein-Kessel compared to co-
expression network:  

A) Sexual stage gold standard set compared. B) Asexual stage gold standard set compared. Expression 

repressed as z-score values. 

  

A

B
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3.3.5 Generalized linear modelling (GLM) reveals predictors of stage predominant 
genes  

 

Given the noted discrepancies between the known ‘gold standard’ for developmental phases, 

an analysis was extended to the entire dataset to evaluate transcript stage association. GLMs 

were created to identify the stage for which the transcripts are most predictive based on linear 

regression. Previously defined stages (RT, TS and G) were used to group transcripts within 

each category and GLMs were applied before filtering the results for Bonferroni adjusted P-

value < 0.05 (Figure 3.10). A total of 1420 genes where significantly assigned to one of the 

defined stage categories and this included 500 (~35%) previously uncharacterized genes in 

the set. Genes found to be significantly associated with the RT stage category totalled 614 

(~43%) genes, 119 (~19%) of which are uncharacterized. Four ApiAP2 transcription factors 

were significantly associated with the RT category: pf3d7_1139300, pf3d7_1466400 (ap2-

exp), pf3d7_1408200 (ap2-g2) and pf3d7_0730300 (ap2-l). Ap2-g2 was recently shown to 

associate with RT stages as a general repressor of gametocyte-related genes during asexual 

proliferation41, supporting the accuracy of our predictions. The stage specificity, however, does 

not show exclusion of the transcripts during other stages in development. For example, ap2-

g2 also express during early-stage gametocytes, but not as much as during asexual stages95. 

Of the intramodular hub transcripts, 73 (~60% of stage hubs) were found to be RT associated. 

Serine/threonine protein kinase (pf3d7_1230900) and bromodomain protein (pf3d7_1475600) 

are amongst these transcripts (Supplementary 2). 
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Figure 3.10: Generalised linear model output of stage-associated genes.  
A total of 1420 genes where significantly associated to stage categories. Expression represented as z-

score values. Data available in chapter 3 supplementary 2. 

 

For the TS stage category, a total of 93 genes (~6.5%) was significantly associated with this 

stage, with 27 (~29%) uncharacterized genes. Four ApiAP2’s was associated with this stage: 

pf3d7_1239200, pf3d7_1456000, pf3d7_0613800, pf3d7_0604100. Only 10 (~8.3%) 

transcripts form the intramodular hub set associated with this category. Stage associations to 

gametocytes accounted for most of the gene associated sets at 713 (~50%) genes. The 

uncharacterized genes in the gametocyte set accounted for ~50% of the gametocyte genes. 

Only one ApiAP2 was significantly associated to the gametocyte stages: pf3d7_1429200 (ap2-

o3), recently shown to regulate sex-specific expression of female genes in gametocytes168. 

Intramodular hub genes (38 or ~31%) also associated with the gametocyte stages. Strong 

markers of late-stage gametocytes are captured in the intramodular hub subset, with genes 

such as psop13 (pf3d7_0518800), apl3 (pf3d7_0728200), ankyrin-repeat protein 

(pf3d7_0825100), WD-repeat proteins (pf3d7_1104500 and pf3d7_1121400) and ULG8 

(pf3d7_1234700). Stage-associated genes were cross-referenced with the known “gold 

standards” as set by21 and seen in Figure 3.11, which shows strong concordance with the 
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known published data. The GLM results are based solely on transcriptomic data, this makes 

the data highly suitable for transcript quantification planforms such as qPCR. These stage-

associated transcripts will be referred to as the stage-panel transcripts. 

 

 
Figure 3.11: Meerstein-Kessel gold standard cross-referenced with GLM staged genes and 
intramodular hub genes.  
Stage_MK = Meerstein-Kessel stage description. Stage_glm = our stage description. Hub IMH = 

Intramodular hub genes, NH = non-hub genes. n = 52 

 

The stage-panel transcripts sets were further evaluated using supervised learning approaches 

to determine the predictive power of these transcripts for the assigned stage categories. In 

addition to serving as extra in silico validation of the candidates, this approach may also 

provide a convincing method in molecular stage quantification for future studies. The primary 

validation testing was done by means of a 10 k-fold cross-validation testing (Figure 3.12) which 

serves as internal control (training datasets) of the algorithm’s performance.  
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Figure 3.12: ROC output for stage-associated gene panel from GradientBoostingClassifier.  
True positive rate plotted over false positive rate with individual stage accuracy indicated. Colour legend 

used to indicate stage categories in gold (gametocyte = G), light green (ring-trophozoite = RT) and dark 

green (trophozoite-schizont = TS). 

 

The best indicator of the model performance is done through test set evaluation. The accuracy 

achieved on the test set was 93%. To further confirm the validity of these genes candidates 

as a stage-associated panel, microarray data were integrated and assessed in the same 

manner (datasets from 48,95), with accuracy achieved at 90%. Normalization strategies 

between microarray and RNA-seq data often produce several hurdles. For machine learning 

strategies the data distributions are the first hurdle to overcome, this was achieved through a 

simple mean centered normalization (forcing the mean to 0) and distribution ranges fell within 

margin between sets. The second hurdle is preservation of data order, given that microarray 

is a measure of relative abundance and RNA-seq is a measure of captured abundance, the 

data order is not preserved in the same manner between sets. A conversion of data based on 

extreme features such that the data is divided into 3 values (1, 0, -1) based on upper, middle 

and lower quantile thresholds should preserve data order for truly strong features in each 

condition set. Classifier model used: scikit-learn GradientBoostingClassifier with 5000 

estimates. 

 

The consideration of module assignment and stage-association of genes in this dataset are 

important features highlighted thus far and will be recalled throughout the following sections 

to dissect the transcriptome of gametocytes in more detail. Understanding of when transcripts 

are expressed and in what capacity will be fully utilized to interpret genes extracted via text-

mining for regulatory potential. 
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3.3.6 Subnetwork construction of gametocyte related modules, highlight potentially key 
gene regulatory elements required in gametocyte maturation 

 

Identifying potential regulatory factors for gametocyte maturation relies on all available gene 

ontology information from various sources that, in conjunction with the co-expression network 

and stage-associated genes, could resolve more important factors for this phase of the 

parasite life cycle. Text mining was used to filter genes which may form part of potential 

regulatory machinery in the parasite, and this was combined with specific modules relevant to 

gametocyte development. This subnetwork was filtered for the top 1000 interactions in 

modules 2, 3, 6 and 7 (henceforth referred to as sexual-associated modules) to gain an 

understanding of potential regulatory elements in gametocyte stages (Figure 3.13A). Modules 

2, 6 and 7 show moderate correlation with gametocyte stages and are considered in these 

analyses, though module 2 and 6 correlated similarly to the TS category as well (Figure 

3.13B). This is further evident by the average expression of these modules during gametocyte 

stages (Figure 3.13A). Elements with putative DNA-binding descriptions such as ApiAP2, zinc 

finger and CCAAAT-domain containing proteins were highlighted in this network.  

 
Figure 3.13: Subnetwork constructed from gametocyte associated modules and text-mining.  
A) Expression of modules 2, 3, 6 and 7 used in the gametocyte associated subgraph. Module 

expression shown over stage clearly illustrate modules involved in gametocyte stages. B) Module 

weighted correlation strength distributions and number of connections found in the subnetwork. Module 

connections are indicated in text boxes and colour coded.  

 

Module 3 produces the largest community within this subnetwork (Figure 3.13B), producing 

highly connected hub genes that are very specifically co-expressed with sexual-stage specific 

transcripts, as this module is the best associated with sexual stage development. The entire 

subnetwork with genes to be discussed are labelled in the network topology and an associated 
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statistical breakdown table is also available showing the number of connections per gene 

discussed (Figure 3.14).  

 

 
 
Figure 3.14: Subnetwork from gametocyte-associated modules.  
Subnetwork graph with all modules present in the network. Genes discussed for their potential 

regulatory implications are labelled and position in the network is shown. Colour coding for Other, 

DEAD/DEAH, Zn-finger, ApiAP2 and known gametocyte genes are indicated. 
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Table 3.2: Associated statistical breakdown showing the number of connections per gene 
involved in the subnetwork in Figure 3.15. The associated breakdown of gene properties (in order 

of discussion) indicates gene id’s, names, domain/functional, number of connections, sex-specificity for 

transcripts (Trx), proteins (Prot) or both (Trx + Prot), and translational repression (Rep). Male are 

indicated ♂ and female with ♀. 

 
 

A CPW-WPC protein, ULG8 (pf3d7_1234700) is highly transcribed in late-stage gametocytes 

and is highly connected within this community (150 connections). While the CPW-WPC 

proteins are translationally repressed in gametocytes22,169, this transcript is closely correlated 

to seven of the other eight members of the CPW-WPC proteins and is closely co-expressed 

almost exclusively with other female-enriched or translationally repressed transcripts 

(127/150, 122/150 female enriched transcripts). This same overrepresentation of female-

specific and translationally repressed genes was observed in the targets of CCR4-NOT 
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transcription complex subunits: pf3d7_1128600 (ccr4-not2) and pf3d7_1006100 (ccr4-not5), 

with 34/78 female-enriched transcripts (58/78 translationally repressed) in targets of NOT2 

and 7/10 male-enriched, 3/10 translationally repressed targets of NOT5. 

 

Telomeric repeat binding factor 1 (trf1: pf3d7_0924800) nested within the module 3 

subnetwork presents with high connectivity and centralised topology in the network and shows 

the highest overrepresentation of female and translationally repressed transcripts in the 

network (111/120 female, 110/120 translationally repressed). TRF1contains a homeobox-like 

domain (IPR009057) and belongs to a family of proteins that have wide DNA-binding activities 

and are involved in e.g. recombination through to transcriptional regulation. It is not surprising 

that this cluster which so closely relates to a late-stage gametocyte transcriptional signature 

is enriched for female-specific genes, given that female-enriched transcripts peak later in 

gametocytes than male-enriched transcripts95.  

 

The trend for highly connected nodes in module 3 to be female enriched is broken by one 

specific putative regulator, a DEAD/DEAH helicase (pf3d7_0216000) which co-expresses with 

both female (41/94) and male (31/94) enriched transcripts respectively. DEAD/DEAH 

helicases can act as important cofactors to aid coactivation or co-repression of specific 

transcription factors and are themselves usually highly regulated (InterPro: IPR001650), which 

makes its expression at this stage of development noteworthy and is also interesting given 

that pf3d7_0216000 is itself a male-enriched transcript. Thus, not all genetic regulation 

enacted in late-stage gametocytes is binarily linked to either male or female gametocytes but 

can impact the expression of sexual-stage specific genes. Further, an uncharacterised protein 

pf3d7_1114600 with a predicted gene ontology related to DNA binding forms a central node 

in the network is completely uncharacterized but shows a strong correlation with male 

enriched transcripts (70/100). These results suggest that although male-specific transcripts 

peak early in gametocyte development95, a male-enriched transcriptional signature is 

distinctive in late-stage gametocytes.  

 

The final highly connected node in this cluster, uncharacterised protein pf3d7_0801400 also 

with a predicted gene ontology related to DNA binding, forms one of the most central nodes 

within the subnetwork and similarly to the DEAD/DEAH helicase, is not highly connected to 

male (7/48) or female specific (16/48) proteins or transcripts. Together, this cluster highlights 

several under characterized genes that closely associated with sex-specific and gametocyte-

specific genes that are of relevance for further characterization. 
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3.3.8 Putative specific transcriptional regulators co-cluster in separate early/late 
expression clusters 

 

Genetic knock-out studies of the entire ApiAP2 family of transcription factors have been 

instrumental for the phenotypic and functional characterization of these proteins in rodent 

malaria models134. However, parallel studies in P. falciparum are hampered by its low 

transfection efficiency and haploid genome170. We aimed to predict which putative specific 

transcription factors could impact gametocyte development in the P. falciparum parasite. 

Within large transcriptional networks, ApiAP2 proteins are often under-represented given their 

subtle increases in transcriptional abundance and sometimes indirect effects on actual 

transcriptional abundance of their experimentally determined target genes41,154,171 and reliance 

on additional regulatory factors, like the epigenetic regulators bromodomain protein 1 (BDP1) 

and HP1. However, such analyses do inform on those transcription factors that can show 

strong, direct regulation of some of their target genes ex AP2-G38. Within this gametocyte-

selective subnetwork, we find most of these same putative regulators again, pf3d7_0934400, 

pf3d7_0611200, pf3d7_0516800. Interestingly, these are all associated with module 2, which 

skews towards gametocytes but also shows moderate correlation to TS stages. The one 

notable absent genetic regulator, pf3d7_1222600 (ap2-g) is expressed in a very tight window 

immediately preceding gametocyte development38,44 and only within a subset of parasites 

committing to gametocytes, and these factors are expected to have confounded clear 

association with regulated genes in this network.  

 

A small subcluster centred around module 6 included an ApiAP2 (pf3d7_0802100) and 

histone-lysine N-methyltransferase, set9, which were of interest as this module correlates with 

gametocyte genes but is slightly more correlated to TS stages. It is possible that these 

aforementioned genes play a minor role in gametocyte stages but interestingly our previous 

work94 showed these proteins might play a role in the cell cycle of asexually dividing parasites 

and also picks out 3 of the same genes regulated by set9 in our GRENITS network, 

(pf3d7_0806300, pf3d7_0704500, pf3d7_1141800) a ferlin (involved in vesicle fusion), protein 

kinase and EELM2 domain containing protein respectively and once again confirming an 

indirect interaction with pf3d7_0802100. Similarly, two ApiAP2’s in module 2 showed a direct 

association (pf3d7_1239200 and pf3d7_1456000) but were also skewed towards TS stage 

genes. 

 

Module 6 also contained ap2-o (pf3d7_1143100), a translationally repressed transcript which 

co-expressed with female transcripts (3/12) that were also translationally repressed but along 
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with pf3d7_0934400 (2/4) and pf3d7_0611200 (4/14) represented the only ApiAP2 proteins in 

the network with slight biases towards female-specific transcripts or proteins. In addition to 

these previously predicted regulators, the subnetwork also highlights a cluster of genes that 

were strongly associated with gametocyte-related genes (module 3) and identified as possible 

transcriptional regulators that are expressed early in gametocytogenesis in our previous work 

(Chapter 2)95. These genes include ap2-o3 (pf3d7_1429200), an uncharacterized AT-rich 

interaction domain (ARID) containing protein (pf3d7_0603600) and c-Myc-binding protein 

(mycbp, pf3d7_0715100). Interestingly, the group these genes were clustered into in our 

previous work (Chapter 2)95 was also enriched for male-specific transcripts and all 3 of these 

putative regulators co-expressed with genes enriched for male-specific transcripts (13/21 for 

pf3d7_1429200, 2/3 for pf3d7_0603600, 10/14 for pf3d7_0715100). The transcript for a WD-

repeat protein (pf3d7_1347000) strongly associated to mycbp, highly connected in the sub-

community and similarly co-expresses with male-enriched transcripts or proteins (12/17).  

 

High connectivity to the module 3 cluster could be indicative of a central role in gametocyte 

biology and these highlighted candidates could be of particular interest to study for their roles 

in male gametocyte differentiation. Together this subnetwork forms a source for well-

established as well as novel transcripts related to sexual stage development that could be 

mined to provide leads for investigating sex-specific and sexual-stage specific processes in 

P. falciparum gametocytes arising from a well-curated and controlled set of combined RNA-

seq datasets. 

 

3.3.9 Adjacent neighbour gene pairs show positive correlations which could indicate 
shared promoters  

 

The weighted co-expression profiles further led us to examine the effects of neighbouring gene 

pairs in the transcriptome, with the potential deconvolution of shared promoter effects. Though 

we cannot resolve the overlapping effect of neighbour gene transcription, the result (transcript 

co-expression or anti-correlation) may produce valuable insights. It is therefore necessary to 

investigate potentially anti-correlated effects in the co-expression network to account for 

neighbour genes that may negatively affect each other. To this end a modification in the 

WGCNA calculation, called csuWGCNA, was introduced to capture these anti-correlated 

results. 

 

Both negative and positive weighted correlations (csuWGCNA) for neighbour gene pairs were 

calculated and illustrated across their Pearson correlations to indicate direction (Figure 3.15A). 
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The adj(i,j) scores therefore indicate the strength of the interaction (scale-free topology 

requirements met), while the Pearson correlations indicate the direction of the interaction 

(correlated or anti-correlated). A clear co-expression feature is observed for neighbour gene 

pairs rather than an anti-correlation feature as is evident in the skew towards correlated 

(Figure 3.15A). Furthermore, given that anti-correlated pairs rarely exceed adj(i,j) above ~0.4 

it seems unlikely that this network has captured any neighbour pair interference in expression. 

The network does however seem to indicate strong co-expression with values as high as ~0.8, 

which may be helpful in understating shared promotors. 

 

 
Figure 3.15: Neighbouring gene pairs captured using csuWGCNA.  
A) Neighbour gene pairs and their weighted correlations as show with regards to negative or positively 

correlated relationships. adj(i,j) = csuWGCNA adjacency values, cor(i,j) = Pearson correlations. B)  

Neighbour gene pair weighted correlations for 3 configurations (Head-to-tail, head-to-head and tail-to-

tail) shown over distance between gene body start sites. Striped boxes indicate gene pair associations 

adj(i,j) > 0.25 and a distance between gene start site < 5500 bp. Values of the striped boxes are show; 

n = total, G = number in gametocyte modules (3,7), A = number in asexual modules (1,4,5,8,9,10,11) 

and S = number of genes in shared modules (2,6). 

 

Distance between genes is often relevant in shared promotor formations. Thus, gene 

neighbours were subsequently also arranged into three configurations that show gene 
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orientation with regards to their adjacent neighbour gene pairs: tail-to-head (n = 2401), head-

to-head (n = 1678) and tail-to-tail (n = 1702) configurations (Figure 3.15B). Neighbouring gene 

pairs show strong co-expression signals suggesting that they are either likely to have shared 

promotors and potentially shared transcriptional factors/complexes with separate promotors 

or alternatively co-express independently of shared regulatory mechanisms. However, the 

expression of a neighbouring gene does not seem likely to be repressive regardless of 

configuration. Head-to-head and tail-to-head configurations are the most prominent, with very 

few tail-to-tail associations found. This would be expected as the distance between tail-to-tail 

configurations may be vast. This configuration in the linear plane ignores the potential three-

dimensional effects of the genome which may bring some gene pairs in closer proximity.  

 

Head-to-head configurations are most indicative of potential bi-directional promotors and 

stronger co-expression is observed for those in closer proximity of each other (Figure 3.15B). 

Many of these pairs have been observed before24. 

 

Neighbouring gene pairs were further subdivided into module association along strict lines to 

gain insight into which phases are relevant (asexual, gametocyte or shared between the two). 

Modules which only associated with gametocytes were used to count the number of 

gametocyte neighbours which co-express (Figure 3.15B), the same for asexual modules. 

Shared modules which present with moderate correlation to both asexual and gametocyte 

stages was similarly used. Tail-to-head configurations would appear to be largely relevant for 

asexual co-expression (94/148), which possibly indicates the use of tandem expression. 

Similarly tail-to-tail configuration appears to involve asexual co-expression (17/32), however 

these numbers are relatively small. More gametocyte related neighbour co-expression in the 

head-to-tail configuration (62/138), however many asexual neighbours also co-express 

(50/138). The differences between gametocyte and asexual co-expression for these 

neighbouring configurations are small, and perhaps expected. It seems more likely that 

neighbouring genes are influenced by the gene orientation (which provides us with the above 

configurations) and access to the genome through the chromatin structure. Transcription start 

sites may also influence neighbour gene co-expression, as was noted for pf3d7_0505500/ 

pf3d7_0505600 (head-to-tail), the closer the TSS of pf3d7_0505500 was to pf3d7_0505600, 

the more pronounced their co-expression24. Those corresponds to the fact that head-to-tail 

pairs which are closer to one another have stronger co-expression. The relevant TSS for 

gametocytes are however not known for P. falciparum. It is therefore more plausible that these 

configurations and their co-expression are driven by localised factors such as gene orientation 

and chromatin structures, and less likely due to differences in parasite phases.  
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3.3.10 Intergenic lncRNA show both strong co- and anti-correlation with genes: 

 

As previously discussed, the role of intergenic lncRNAs such as lncRNA-TARE have been 

shown to play a role in gene regulation. The mechanisms with which in lncRNAs can regulation 

transcripts is still unclear, however elucidating potential target transcripts may be a step closer 

to understanding these mechanisms. Newly discovered lncRNA were defined as transcripts 

which do not reside within nuclear gene bodies and had a length greater than 100bp. These 

newly discovered lncRNA’s are named based on the chromosome they are found and roughly 

the start to end bp numbers (pf3d7_chromosome_v3: start coordinates – end coordinates). 

Intergenic lncRNA’s (new and existing) were correlated against the transcripts from nuclear 

genes with csuWGCNA to evaluate both positive and negative weighted co-expression (Figure 

3.16). Strong co- and anti-correlation is observed for these lncRNA with that of nuclear genes 

(Figure 3.16). For the pairs that are anti-correlated, the explanation may be as simple as 

occurring during different stages and thus have no significant bearing on each other. For 

instance, if a transcript expresses during asexual development and the anti-correlated lncRNA 

is only present during sexual stages, this could just be a coincidence. However, given that the 

mechanism of how lncRNA’s can affect transcription is not entirely clear the presence of this 

lncRNA might be required to repress the aforementioned hypothetical transcript. Such causal 

relationships cannot be inferred from these data, thus we only take note of these correlations. 

Correlated pairs on the other hand may be a good indication of post-transcriptional repression, 

however as with anti-correlated pairs we can at most note these relationships, as inferring 

causal relationships will require experimental validation. 

 



 105 

 
Figure 3.16: Intergenic lncRNA captured using csuWGCNA.  
Intergenic lncRNA and weighted correlations to nuclear genes as visualized. Interaction strengths 

adj(i,j) and Pearson correlations cor(i,j). 
 

A more in-depth analysis of these relationships required separating noisy correlations from 

non-noisy ones. Intergenic lncRNA’s were therefore assessed for significance in terms of their 

association to nuclear genes using generalized linear modelling in attempt to go beyond 

simple correlations. A stringent cut-off was imposed for these associations with adjusted P-

value < 0.001 and weighted correlations greater than 0.4. These significant relationships were 

used to construct a subnetwork of the data. The subnetwork was further divided into 

gametocyte correlated and gametocyte anti-correlated subsets to investigate potentially 

interesting lncRNAs (Figure 3.17). 

 

Four noteworthy lncRNAs correlated with genes associated to gametocyte stages: 

pf3d7_0108900, pf3d7_0829700, pf3d7_0935390 and pf3d7_0809300 (Figure 3.17A). 

Comparison to translational repression and transcript stabilisation was used to infer if these 

lncRNA play a role in repression of their respective target transcripts. Male repressed 

transcripts were observed for pf3d7_0108900 (n=3 repressed, n=6 stabilised) and 

pf3d7_0935390 (n=1 repressed), conversely pf3d7_0829700 correlated with 4 translationally 

repressed female transcripts, while pf3d7_0809300 did not correlate with any repressed 

transcripts.  

 

The subsets of lncRNAs which anti-correlated with gametocyte transcripts are 

pf3d7_1229200, pf3d7_0626840, pf3d7_02_v3:409523-409680(+) and pf3d7_0918500 

(Figure 3.17B). Two lncRNAs anti-correlate with a large number of gametocyte-associated 



 106 

genes, pf3d7_1229200 (64/74) and pf3d7_02_v3:409523-409680(+) (73/117), with the other 

at relatively low proportions of the overall connections, pf3d7_0626840 (35/132) and 

pf3d7_0918500 (2/9).  Both pf3d7_1229200 and pf3d7_02_v3:409523-409680(+) have a 

strong inverse relationship with gametocyte genes with peak expression during early asexual 

stages (RT). Previously, mechanisms involving lncRNA associated at telomere regions were 

postulated to repress the transcripts of a var gene61. Though much remains unclear about how 

lncRNA can regulate the parasite transcription, it is tempting to investigate the potential role 

of pf3d7_1229200 and pf3d7_02_v3:409523-409680(+) in repression of their respective 

gametocyte target transcripts.  
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Figure 3.17: Subnetwork of lncRNAs show correlated and anti-correlated expression with 
gametocyte modules.  
Subnetwork of lncRNA and interacting nuclear genes filtered for adjusted P-value < 0.001 and a 

weighted correlation > 0.4. A) Subset of lncRNA which correlate with gametocyte modules. Expression 

of lncRNA shown in black and modules coloured. B) Subset of lncRNA which anti-correlate with 

gametocyte modules. Potentially novel lncRNA’s discovered during the analysis was annotated as 

strain of genome followed by version and then the start and stop coordinates (pf3d7_chromosome_v3: 

start coordinates – end coordinates).  
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3.3.11 Intragenic lncRNA (anti-sense transcripts asRNA) potentially repress transcripts 
during gametocyte stages 

 

Previously, asRNA mechanisms of transcriptional regulation have been characterised and 

shown to play roles in regulation, such as gdv1 asRNA, however little is known about asRNA 

regulation in gametocytes. We therefore evaluated the relative abundance of anti-sense 

transcripts, as compared to their corresponding mRNA transcripts with the DAFT-seq time 

course data. These asRNAs were quantified as FPKM-normalized reads of their 

corresponding gene body regions and a log2FC ratio (asRNA/mRNA) that was calculated 

followed by k-means clustering (nine clusters, Figure 3.18). Clusters 4 and 5 are relevant to 

gametocyte stages as they present with high asRNA:mRNA ratios during these stages. In 

cluster 4, we find chloroquine resistance transporter (pf3d7_0709000) and drug/metabolite 

transporter dmt2 (pf3d7_0716900), which are required during asexual development and has 

not been assigned a specific function during sexual development stages (PlasmoDB cross 

referenced for essentiality). Other genes such as etramps are also seen here, indicating that 

these strongly asexually associated genes are repressed in sexual development and that this 

repression may involve asRNA. Cluster 6 and 9 show strong asRNA signal throughout the 

time course, suggesting asRNA transcripts are present at higher abundance for these clusters 

throughout the time course. Gene ontology analysis of these clusters suggest they are mainly 

involved in transport processes and protein lipidation. Principle amongst genes in cluster 6 is 

and essential protein involved in sexual commitment steps, gdv1 (gametocyte development 

protein 1, pf3d7_0935400), which is known to be repressed by its asRNA transcript45. Four 

conserved unknown genes occur in cluster 6 (pf3d7_0902900, pf3d7_0934600, 

pf3d7_1005800 and pf3d7_1318000). These four genes have no discernible function in the 

parasite apart from InterPro domain results that indicate the presence of membrane 

components and transporter domains. Two rifins also feature in this set, asRNA would appear 

to repress their sense transcripts, however assessing rifins or virulence genes from laboratory-

based cultures do not always produce sound insights as the same environmental pressures 

are not replicated i.e. immune system of the host.  

 

In cluster 1 and 8 there are transcripts with high levels of asRNA signal during asexual stages 

and low signal in gametocyte stages. Cluster 1contains sexual stage-specific protein G37 

(pf3d7_1204400), suggesting these transcripts are functionally more important in gametocyte 

stages but might need to be repressed during asexual development. Such mechanisms have 

been observed for example the repression of gdv1 during the IDC where asRNA plays the key 

role in preventing the initiation of gametocytogenesis. Singh et al.,41 also found sets of gene 
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repressed during the IDC (active in sexual development) which were not linked to repressive 

transcription factors, which would imply alternative mechanisms perhaps such as asRNA. A 

conserved unknown gene (pf3d7_1302400) in this cluster contains transmembrane helices 

and may be an integral membrane component of gametocyte stages as it was found to be 

specific for expression in this stage. In cluster 8 (n = 11), pf3d7_0516500 was found to have 

strong asRNA signal during asexual stages and low signal in gametocyte stages. 

pf3d7_0516500, a transcript for a major facilitator superfamily domain-containing protein, may 

play a role in transmembrane transport and was also shown to be specific for gametocyte 

stages. Another potential transmembrane protein (pf3d7_0912200) is also found in this cluster 

with gametocyte specificity. Neither asRNA transcripts seems to be explained by their 

adjacent gene pair expression i.e. overlapping UTRs from neighbouring genes was not 

observed which could have been counted as asRNA. The independence of these asRNA 

findings was cross-referenced with neighbouring genes to ensure they are not the product of 

neighbouring gene UTR overlaps. This may suggest independent transcription of these 

asRNA. 
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Figure 3.18: Intragenic anti-sense RNA (asRNA) for in-house time course dataset (day -2 to 13). 
The asRNA transcripts were calculated as a log2FC(asRNA/mRNA) ratio with gold indicating high 

asRNA abundance. K indicates clusters and their respective numbers. Stage I-V refer to gametocyte 

stages and colours match genome coverage plots. Sense and antisense directions are indicated for 

each example gene. Stands are indicated by (+/-) denoting positive and negative strands respectively.  
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3.4 Discussion 
 

This study combines data from key Plasmodium RNA-seq datasets to build out strongly stage-

associated transcriptional markers through powerful network analysis approaches and 

highlights the importance of asRNA and lncRNA in regulation of gene expression in P. 

falciparum sexual development. Many factors driving gametocyte development remain poorly 

understood, here we quantify the relationships between genes and their relative stage 

associations in the parasite, allowing us to further investigate potential factors which affect 

transcription in gametocytes. 

 

This study shows the construction of comprehensive co-expression network contrasting 

different parasitic life phases, which accentuates the key contributing factors for regulation 

during each phase and their subsequent stages. The power of this analysis comes from the 

use of effective cross-normalisation between the datasets. This variable stabilising 

transformation escaped the trappings and caveats normally encountered by combining 

different datasets and the constraints and biases introduced by different experimental 

datasets. This allowed us to compile a strong co-expression network of stage-associated 

transcripts, highlighting a clear progression and separation of early asexual development from 

late asexual development carried through to sexual development. Prominent gene clusters 

are formative in the network topology and describe the split nature between the two life 

phases. Intramodular hub genes show high connectivity and strong correlation to their 

respective modules, thus are core features of these modules. This would suggest that these 

hub genes are needed for their respective modules and inferred development stages.  

 

The power of correlated associations highlights the importance of the hub genes at the core 

of their respective development stages, the rationale being that if these genes are strongly 

associated with other genes in this development cycle and that their presences are unlikely to 

be coincidental. We propose this panel of genes as informative for predicting parasite stages 

in terms of the set categories from transcript levels in conjunction to the stage associated gene 

modelling that was performed. The vast majority of RNA-seq datasets for P. falciparum have 

focused on asexual development and here, we contribute a full gametocyte maturation time 

course RNA-seq dataset to produce a more balanced network that can capture the total 

complement of stages in asexual and sexual blood stage development of the parasite. Except 

for the construction of a detailed co-expression network highlighting key genes for stage-

transition in P. falciparum parasites, our in-house RNA-seq dataset also enabled the 

exploration of additional transcriptional control mechanisms (asRNA and lncRNA) that could 

not be investigated in previous microarray time courses95,105.  
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Beyond the interplay of genes and their effect on one another, the role of alternative regulatory 

mechanisms such as non-coding RNA and the localised effects of neighbouring gene pairs 

also show possible involvement in gametocyte development. Neighbouring gene pair 

correlations proved overwhelmingly in favour of positive relationships suggesting the potential 

for shared promotors, though the granularity of the data may produce asynchronous artifacts 

which the co-expressions could not account for. However, for the pairs where these 

relationships do occur, it would be interesting to further investigate the potential role of a 

shared promotor in these regions.  

 

Other lncRNA occurring outside of gene body such as intergenic lncRNA may also play a role 

in gene regulation. It was previously proposed that some lncRNA, particularly those situated 

near telomeres have a regulatory role for var genes155. lncRNA have been showed to play a 

role in gene regulation in other organisms, particularly for Apicomplexa42. However, no such 

relationships have been investigated for gametocytes in P. falciparum. Here, we identified 

novel gametocyte specific lncRNA with strong co-expression and anti-correlated relationships 

with gametocyte-related genes. The effect these lncRNA have on the expression of genes 

remains to be seen, but their existence and quantified relationships do present interesting 

research prospects. Validation of lncRNA and their respective targets is a complex problem 

and most likely require knockout or knockdown validation studies to measure their effect.  

 

The power of this study resides in tailoring the approach to the data at hand. Noisy 

relationships between gene pairs are par for the course for any researcher dealing with large 

transcriptomes spanning multiple life phases, sometimes generated at different times by 

different researchers and in different labs. Usually, the addition of more data can introduce 

more noise, however, with this approach, we managed to cut to the core of potentially 

meaningful relationships between data points. This expedites the data discovery process and 

helps to gain more insights into the underlying data structure of relevant factors. These data 

allow for the probing of more complex questions and more extensive analysis, modelling the 

predictive power of relevant regulatory candidates (Chapter 4). 
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Chapter 4 
 

The application of Gene Regulatory Networks in P. falciparum through inference-
based machine learning approaches. 

 

4.1 Introduction 
 

In chapter 3 we constructed a large unsupervised network through co-expression techniques, 

however, co-expression datasets tend to lack predictive power. In chapter 2 we produced 

GRNs with high predictive power, but were constrained by the scale of the data. Therefore our 

next aim was to employ an algorithm which could both expand the scale of the analysis as 

well as the predictive power of the relationships. Decision tree algorithms such as RF and 

GBM allow for expedited assessment of many genes compared to DBNs. RF algorithms such 

as GENIE3 have gained a lot of popularity and are considered a reliable approach to GRN 

construction. This process makes use of supervised learning strategies whereby the core 

model consists of candidate genes and training occurs against target genes in an iterative 

manner71. The importance inferred from these training-set-per-target-gene forms the basis of 

the candidate-target interactions. The inferred importance is effectively a ranking of the feature 

relevance or contribution in the prediction of the target gene’s expression during training and 

identifies which of the candidate genes were most informative in predicting the outcome. The 

individual importance also strongly correlates with the accuracy of the predictions71,78,79.  

 

A key drawback of RFs, however, remains a resource issue: to obtain accurate results, many 

trees need to be constructed as the consensus is what makes RFs so accurate. This is where 

GBMs have the advantage as they learn from each tree building step (shallow decision trees) 

rather than consolidating completely constructed trees as is the case with RFs. One attribute 

of GBMs reigns supreme, that is they are easy to train and generally considered reliable. A 

prominent GBM developed with this goal in mind, GRNBoost, that references GRN gradient 

boosting, was developed by the Laboratory of Computational Biology (Aertslab: 

https://aertslab.org)79. This first version required XGBoost at the core of its engine but has 

since been updated to include Dask as a parallel computing library in conjunction with Scikit-

learn GBMs (GRNBoost2). This was incorporated into a full analytics suite called Arboreto78. 

GRNBoost2 is considered to be Random Access Memory (RAM) intensive, however it 

depends entirely on the size of the submitted data. The resource requirements for GRNBoost2 

vary depending on the gene number and sample size included in the analysis. The original 

platform served to analyse human single cell RNA-seq (scRNA-seq) with thousands of 
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samples. Plasmodium falciparum has a much smaller genome and far fewer genes to 

evaluate, and the resources required to perform these analyses are generally less intense. 

 

Here, we investigate the usefulness of GRN analysis in the P. falciparum research field and 

its ability to infer relevant regulatory candidates. The investigation is divided in two parts. We 

start by constructing a global GRN, which reflect both asexual IDC and gametocyte phases of 

development resulting in the most comprehensive GRN in the field to date. Here, a wider “net” 

is cast on both candidate and target genes by employing the power of GBM based techniques 

such as GRNBoost2. Lastly, the construction of GRNs through Arboreto, was packaged in a 

“user-friendly” application for researchers in the field and provides access to a pre-compiled 

filterable GRN constructed during the study. 

 

The content of this chapter has been presented in part in the following instance: 

1. van Wyk, R., van Biljon, R., Birkholtz, L. (2021) MALBoost: a web-based application 
for Gene Regulatory Network Analysis in Plasmodium falciparum. Malaria Journal. 
317. 
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4.2 Methods: 
 

4.2.1 Consolidate gene candidates for construction of a global GRN in P. falciparum 

 

Gene candidates discovered through three studies (chapter 3, cell cycle96 and ApiAp2’s from 

the gametocyte network) were used as putative regulatory genes. These candidate genes 

were further filtered manually based on biological relevance for a total of 124 candidate genes. 

Biological relevance was as assigned to candidates which showed descriptions for DNA-

binding and transcription regulation as based on known and predicted hits from GO and 

InterProScan. Known and predicted nuclear localisation was also used to inform the selection. 

Candidate genes were submitted to PlasmoDB.org for GO analysis. A threshold of P-value < 

0.05 was used.  

 

4.2.2 Global GRN for P. falciparum using GRNBoost2 

 

All candidate genes identified through the previously described consolidation process (total of 

124) were evaluated against 5163 target genes using the integrated RNA-seq dataset 

compiled in chapter 3, with VST values as described in the normalisation steps (Chapter 3). 

Candidate genes were used to construct and global GRN for P. falciparum using GRNBoost2 

from the Arboreto suite. GRNBoost2 uses gradient boosting machines from scikit-learn in 

conjunction with Dask for task queuing and job prioritization78. This tool uses supervised 

regression learning to infer the relative importance of features (in this case candidate genes) 

for each target vector (target genes). Candidate genes are ranked for importance following 

the algorithm output and the top 100 set of target genes are submitted for motif discovery 

using DREME and FIRE172,173. Filtering for the top 100 interactions per candidate gene was 

done in accordance with the methodology of the original GRNBoost publication79. This 

ensures the evaluation of the strongest interactions found per candidate as the tool would 

have evaluated each candidate against all target genes and generated a score. 

 

4.2.3 Motif discovery of candidate genes 

 

The top 100 target genes following GRNBoost2 analysis for each candidate gene was used 

in two separate motif discovery tools. Genes were submitted to the FIRE online tool 174. 
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Upstream sequences of target genes from 1500 bp upstream of gene start site and 500 bp 

downstream of gene start site were used as input. Strandedness of genes were preserved 

and reverse compliments applied to preserve the correct strand orientation. These target 

sequences were also submitted to the DREME online motif discovery tool175. 

 

4.2.4 Web-based application for user friendly access to Gene Regulatory Networks, 
MALBoost 

 

To make the power of GRNBoost2 more accessible to a wider audience of researchers in the 

malaria field (particularly those with a limited background in Python or 

bioinformatics/Computational biology), the tools were packages in a “user-friendly” web-based 

application. This provides access to GRNBoost2, GENIE3 as well as a pre-compiled network 

produced from this study which are downloadable. The application is named MALBoost, after 

GRNBoost with intended use in the malaria research field. The application is constructed 

through Python-Flask which is a microframework for web applications built in python. Flask 

handles requests via the web interface and distributes the request to various technologies. 

Flask requires a Web Server Gateway Interface (WSGI) to handle these requests more 

efficiently, here Green Unicorn (Gunicorn) provides this service. Since the requests made 

potentially involve the construction of GRNs through either GRNBoost2 or GENIE3, 

background processes are required to run the request and does not require the user to keep 

an open connection with the web front-end while waiting for results. Rather the networks are 

constructed in the background and the results are emailed as a downloadable link to the user. 

In order to facilitate these background process two components are required, 1) a task queuing 

server and 2) an in-memory data structure store or broker such as Redis or RabbitMQ. For 

this implement we’ve made use of Celery as a task queuing server system with Redis as our 

data store for passing request data onto the Celery workers. This not only ensure that the user 

submission runs in the background, but also provides for multiple submissions being made 

with a sensible task queuing server addressing the submission on a “first come, first serve” 

basis.  

 

General data such as email address and network results are temporarily stored in an SQLite 

databases (DB) for retrieval. The results are emailed to the user through Flask’s own internal 

mail service in conjunction with a set Gmail account for the application. The email contains 

the result download link, the email may also contain any error status which occurred during 

the network construction. Data stored in the DB are temporarily stored for 3 days and deleted 

via the Flask application schedular. This ensure that the DB does not get congested, and that 
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personal details of users and results are not stored long term. Submission data 

(transcriptomes submitted) are passed onto the task queuing servers which run the GRN 

models through the SQL DB, however the transcriptome data itself is immediately purged from 

the DB upon model completion. This is to ensure the privacy of the user and to not strain the 

storage resources of the system.  

 

The front-end architecture of the application is web-based as mentioned, which gives users 

access to the tools without requiring any installations or hardware resources of their own. The 

web-application facilitates the front-end using three popular technologies: Hyper Text Mark-

up Language (HTML), Cascading Style Sheets (CSS) and JavaScript. HTML is responsible 

for the overall architecture of the web page with CSS controlling the web page style such as 

font type/size, colours, and various aspects of the web aesthetics. The web front-end is based 

on a modified version of pre-constructed bootsrap4 template 

(https://startbootstrap.com/themes/) which offer free and open-source templates for the use in 

web applications. The application is currently deployed on the University of Pretoria Centre 

for Bioinformatics and Computational Biology servers and can be found at 

http://malboost.bi.up.ac.za. 

 

4.3 Results 
 

Candidate genes with potential regulatory function in gene expression in different stages of P. 

falciparum were collected and consolidated from three studies: the transcriptome of the 

asexual cell cycle study94 (referred to as VBC), the microarray-based transcriptome of 

gametocyte maturation95 (referred to as VBG, which primarily focused on the ApiAP2 

transcription factor family) and the RNA-seq transcriptome study performed in Chapter 3 of 

this thesis (referred to as VWG). Consolidation of candidate genes identified in each of the 

three datasets produced several overlapping candidates; five ApiAP2 genes between all three 

datasets and 22 genes shared only between the gametocyte-associated datasets (VBG and 

VWG), with VBC and VWG sharing 19 additional candidates and five genes shared across all 

datasets. A total of 305 candidate genes were identified, with 88 unique genes in the VBC 

dataset and 171 in the VWG dataset (Figure 4.1A). A final list of 124 candidate genes were 

identified for GRN construction that all presented with strong GO terms (P-value < 1.6e-06, 

biological process level, Figure 4.1B) for regulation of biological process, regulation of cell 

cellular process, regulation of transcription, multiple macromolecule biosynthesis regulation 

and regulation of gene expression.  

 



 118 

Based on these candidates, a comprehensive list of genes, which potentially regulates 

transcription in P. falciparum, was compiled and was evaluated through the construction of a 

global GRN using GRNBoost2. 
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Figure 4. 1: Consolidation of candidate genes for transcriptional regulation in P. falciparum.  
A) Venn diagram of candidate genes as produced from the findings of three studies: van Biljon 

gametocyte (VBG)
95

, van Biljon cell cycle (VBC)
94

 and van Wyk gametocyte (VWG) in chapter 3. From 

a total of 305 candidates only 124 were considered for GRN post-manually filtering for biological 

relevance. B) Gene Ontology analysis of candidate genes rank from highest counts per biological 

process to lowest. P-values indicated as -log10 for both colour and size. All P-values < 1.6e-06.  
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4.3.1 Global GRN constructed through supervised machine learning escapes the 
trappings of conventional correlations and size constraints of Bayesian networks 

 

The 124 candidate genes were used to construct a global GRN using GRNBoost2 by 

evaluating the candidates against a total of 5163 target genes (transcripts captured and 

shared across add datasets). This evaluation was done using the integrated dataset produced 

in Chapter 3 as it is the most representative of both parasite life phases (asexual and sexual) 

between the three studies with appropriate normalisation between sets and samples. It also 

produced the largest sample set of the three studies at n=49. Normalisation between 

microarray and RNA-seq data could not be achieved here hence the focus on the integrated 

RNA-seq dataset from Chapter 3 for the construction of the GRN. As described previously 

(Chapter 1) and in 78, the candidate genes are used as model features (the X in machine 

learning terms) in order to predict the target gene (or the Y) for each gene. The relative 

importance of each candidate gene is then extracted and assigned as the interaction between 

candidate gene and target gene. This theoretically produces 640 212 interactions (124 x 

5163), however the tool does remove interactions that do not produce predictable outcomes 

and resulted in a total of 636 732 interaction for the network. This network size vastly exceeds 

our previously constructed Bayesian networks through GRENITS in Chapter 2.  

 

The GRN captures 324 020 negative or potentially “repressive” relationships with 312 712 

positive, co-expressed relationships (as assessed through Pearson correlations) to assign 

direction of the interaction relationship (Figure 4.2A). The general trend between correlation 

and inferred importance seen through a Generalized Additive Model (GAM) fit shows a general 

associated trend between the two metrics, but not a convincingly strong relationship (Figure 

4.2A with r2= 0.495). Thus, generally, the better correlated the interaction, the more likely the 

case that it will have strong inferred importance. However, many strongly correlated 

interactions (r2³|0.7|) do not seem to produce high importance values (< 5) Figure 4.2B. This 

illustrates that the model had low predictive power for many of the interactions which are 

strongly correlated, questioning the reliability of the correlations themselves and validity of 

“guilt-by-association”. Interactions that strongly correlate but fail to exhibit predictive potential 

when models aim to predict the outcome, are likely to be coincidental in nature.  

 

Conversely, instances where the correlations ≤0.5 exhibited importance values > 40 showed 

high predictive power which was unexpected (Figure 4.2C). This may be the result of GBMs 

finding asynchronous patterns in the dataset, which ultimately seem to predict the outcome 

with some measure of reliability. The inferences would therefore be able to tease out more 
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relevant interactions than correlations. There are however candidate genes, for which 

correlation strength (r2³0.5) indeed matches that of inferred importance (>60) (Figure 4.2D). 

Interestingly, the predictive power of GRNBoost2 seems to capture correlated and anti-

correlate interactions relatively well. 

 

Machine learning, which aims to predict the outcome more accurately, therefore escapes the 

trappings of conventional correlations and highlights that many of the interactions that would 

normally be heavily emphasised due to their high correlation strength, may lack relevance in 

biological interpretations. The data here therefore provides a useful list of important gene 

candidates as regulatory elements.   

 

 
Figure 4. 2: Distribution of inferred regulatory interactions from GRNBoost2.  
A) Importance values for candidate genes with their respective target genes shown in colour and y-

axis. Pearson correlations for interactions on the x-axis, correlated and anti-correlated distributions 

shown. A grey trend line as per GAM fit illustrating a general trend between correlation and inferred 

importance r2= 0.495. B) Interaction with correlations >=|0.7| with importance values <= 5 shown in 

black. C) Interactions with values >= 40 and correlations <=|0.5| shown in dark red. D) Interactions >= 

60 and correlations >=|0.5| in red.  
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4.3.2 The distribution of interaction strength differs greatly between candidates 

 

Given the sheer volume of the GRN, at over ~600 000 interactions, prioritised filtering of the 

network was required for further analysis. Each candidate gene (n=124) was evaluated 

against 5163 target genes in a one-to-one ratio, generating output values for every candidate 

gene with every target gene. Therefore, evaluation of candidate genes was done for only the 

100 strongest responses in the network as suggested in the original GRNBoost study79. 

Ranking of interactions was done in accordance with median importance per candidate set 

and arranged from strongest to weakest to provide a distribution order (Figure 4.3). 

 

Candidate gene pf3d7_1332100 (unknown function) ranks lowest in the GRN with a mean 

importance of 4.31, presenting with a narrow distribution in the lowest importance ranges and 

therefore serving as an example of low predictive power for some candidates in the network. 

Candidates in the red hue regions (Figure 4.3) though numerous, serve as potentially 

interesting effectors of regulatory roles in P. falciparum. These candidates have generally 

larger median importance values in their top 100 interactions than the blue hue regions, which 

suggest these candidates possess greater predictive power with regards to their target genes. 

For this reason, candidates with a high importance median and known biological ability for 

transcriptional regulation (such as known transcription factors), will receive closer focus.  
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Figure 4.3: Ranked distribution of top interactions per candidate gene, prioritising candidates.  
Each of the 124 gene candidates have been filtered for the top 100 strongest interactions and ranked 

according to the sample median and represented with box-whisker plots.  
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4.3.3 A Focused investigation of select candidates illustrates the ability of GRNs to 
postulate causal relationships 

 

After prioritised filtering of candidate genes and their subsequent quantification of the median 

importance metric, four candidate genes were selected for further analyses. These candidates 

showed strong importance values for their respective target genes and are also known 

transcription factors with the exception of one candidate previously identified to possess a AT-

rich interaction domain (ARID) and has been implicated in gene regulation via precious 

studies95. The subset consists of pf3d7_0516800 (ap2-o2), pf3d7_0603600 (ARID domain), 

pf3d7_0604100 (sip2 -ApiAP2) and pf3d7_1429200 (ap2-o3). All but SIP2 are known for their 

expression during the sexual development phase of the parasite, while SIP2 expression 

generally peaks during trophozoite and schizont stages48.  

 

Expression trends for each candidate was modelled using the integrated RNA-seq dataset 

(Chapter 3) and displayed as smoothed lines (loess polynomial fit) accompanied by the 95% 

confidence intervals (CI) (Figure 4.4). Distributions of target genes, which either correlate (in 

red) with candidate genes or ant-correlate (blue), show clear concordance with candidate 

gene co-expression. It should be noted that target genes which anti-correlate, have been 

inferred in a predictive relationship with their respective candidate genes. It would not be 

possible to discuss a direct role of a repressive relationship by any of the example candidates 

as empirical data associated with these genes are lacking. It is furthermore clear that 

interactions from the network are predominantly correlated as seen by the number of positive 

counts (Figure 4.4).  

 

The transcription factor ap2-o2 is a known to increase throughout gametocyte development 

with peak expression in late gametocyte stages95,105, a trend echoed in this dataset (Figure 

4.4). The top target gene for ap2-o2 (pf3d7_1325900, importance = 66.03) is a conserved 

unknown protein with no assigned function in the annotated genome of P. falciparum. Gene 

ontology for pf3d7_1325900 would suggest a role in actin and calmodulin binding as part of 

its role in the microtubule associate complex, however, little is known about this protein. 

Interestingly, it was used in an analysis as a saliva protein marker in children between the 

ages of 5 and 12 for detection in subclinical parasite infections176. Both ap2-o2 and -o3 where 

enriched for cytoskeleton remodelling upon GO analysis. The top target for ap2-o3 is a 

putative alpha/beta hydrolase pf3d7_0728700 with an importance of 93.38. A centrosomal 

protein CEP120 (pf3d7_0504700) was the second strongest target gene of ap2-o3 

(importance = 71.95). The role of ap2-o3 in regulating cep120 is unclear at this point but may 
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serve relevance in cytoskeletal processes. A putative RNA-binding protein (pf3d7_1126800) 

with importance = 42.23, could be under the control of ap2-o3, however, ARID protein showed 

a higher importance at 51.53 for this protein and may be a more relevant regulator.  

 

Additionally, a mRNA binding protein PUF1 (pf3d7_0518700) are also amongst the strongest 

targets for ARID with an importance value of 49.05. PUF1 is well characterised for its role in 

the maintenance and development of mature gametocytes. Disruption of PUF1 presents with 

a clear decrease in gametocytaemia after stage III gametocytes177. ARID may therefore be a 

vital component of gametocyte maturation, ARID also exhibited with strong importance values 

for ap2-o3 (48.40). A concerted effort from both ARID and ap2-o3 may be required for 

gametocyte maturation, particularly for their shared targets. A particularly interesting target 

gene of both regulators is gametocyte enriched phosphoprotein (EGXP, pf3d7_1466200, 

ARID importance = 33.04 and ap2-o3 importance = 31.61). EGXP has previously been 

identified as an important antigen during gametocyte stages178. Individuals who with 

antibodies against EGXP had a lower gametocyte density (31%) over an 18 week follow up 

period. The disruption of these two regulators (ARID and ap2-o3) are possible interesting 

targets for transmission blocking strategies.  
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Figure 4.4: Gene Regulatory Network analysis captures strong association with candidate genes 
and their respective targets.  
Expression as variance stabilised transformations (VSTs) are represented with box-whisker plots, 

separated with correlated (red) and anti-correlated (red) target subsets. Candidate gene expression is 

represented as line graph (95% CI grey shading) with number of correlated targets and anti-correlated 

indicated as bar graphs. pf3d7_0516800 (AP2-O2), pf3d7_0603600 (ARID domain), pf3d7_0604100 

(SIP2) and pf3d7_1429200 (AP2-O3). DREME motifs are displayed for each candidate gene as 

determined by the top 100 interactions. Sample keys: BB = Broadbent, HM = Hoeijmakers, LB = López-

Barragán, LS = Lasonder, SL = Siegel, RVW = van Wyk. 

 

SIP2, a member of the ApiAP2 family of transcription factor family, has a well-documented 

role of transcriptional regulation during asexual development46. Gene ontology terms for target 

genes in SIP2 subset contain cytoadherence, rhoptry, apical complex, vesicle, and 

extracellular related processes. Not surprisingly, merozoite surface protein 10 (MSP10) is the 

top target gene for SIP2 in the network with an importance of 77.94. MSP10 was deemed non- 
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mutable in is coding domain sequence (CDS) and is considered an essential gene179. The 

transcript for a conserved unknown protein, pf3d7_1310200, was the second strongest target 

for SIP2 (75.96) and also shown to be an essential gene179, followed by the transcript for 

another gene essential to asexual development, rhoptry neck 2 protein, pf3d7_1452000. An 

AP2 (pf3d7_0613800) is amongst the top targets of SIP2 and known to be essential. In fact, 

62% of the top target genes for SIP2 are considered genes essential for asexual development 

in P. falciparum. SIP2 also shows potential regulation of cdpk1, which we have shown to play 

an important role in regulating the cell cycle in downstream signalling during the IDC94. 

Previously we determined that pf3d7_1112100 (conserved unknown) and cAMP-dependent 

protein kinase regulatory subunit (pkar, pf3d7_1223100) may be involved in regulating 

CDPK194. SIP2 may therefore, in conjunction with PKAr and pf3d7_1112100 be involved in 

regulating CDPK1 during cell cycle progression. 

 

 
Figure 4.5: Expression profiling across the intra-erythrocytic development cycle reflect findings 
from GRN.  
Expression is quantified as a log2(cy5/cy3) expression across a 48hr time course 

48
. pf3d7_0516800 

(AP2-O2) and pf3d7_0604100 (SIP2) are displayed on the Figure with correlated target genes in red 

and anti-correlated targets in blue. Gene counts for each candidate is shown by the bar graphs in the 

right-hand side of the figure. The numeric values on the x axis depicts the time at hours post invasion 

(hpi) as sampled in the experiment.  
 

The GRN therefore produce a wealth of insights into the parasite biology with numerous 

candidates to investigate for further significance. The amount of data generated from this 

analysis may hold the key to future studies on candidate genes or even their respective 

targets. A small subset of candidates was highlighted here to prove the significance and power 

of this network analysis, but the overall significance can be explored much more in-depth by 

follow-up studies. The application of GRN analysis remains a niched subject in malaria 

research, and a lack of tools may be the cause for this. Although the Arboreto suite is a 
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complete and comprehensive python package, which proves “user-friendly” to most familiar 

with basic programming, this type of analysis remains out of reach for non-bioinformatics or 

non-computational biology researchers who are not familiar with programming. To this end 

this analysis framework was packaged in a “user-friendly” web-based application for 

researchers to easily access the tools in addition to downloading the pre-compiled networks 

generated form this study.  

 

4.3.4 MALBoost: a web-based application for Gene Regulatory Network Analysis in 
Plasmodium falciparum 

 

4.3.4.1 Intended use 

 

GRNs constructed through supervised machine learning algorithms such as GENIE3 and 

GRNBoost2 offer fast and reliable tools for GRN research71,78. However, these tools often 

require familiarity with python programming and additional resources on which to run the 

analysis. MALBoost offers malaria researchers easy access to these machine learning tools 

through a user-friendly, web-based application framework. Researchers can submit their own 

transcriptomic data for de novo network construction or download a pre-compiled and 

validated network built for P. falciparum that can be used as reference framework. Users can 

submit their transcriptomic data along with a list of regulatory gene names to the web-

application. Two options of analysis are available, GRNBoost2 and GENIE3. A “flat-file” output 

is generated for all the relationships along with Pearson correlations (Figure 4.6). We 

recommend the use of Cytoscape for easy interpretation of networks and construction of 

network figures. Cytoscape also hosts other secondary network analyses180. 
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Figure 4.6: MALBoost user overview.  
Users can submit their transcriptomes along with a list of regulatory gene names to 

http://malboost.bi.up.ac.za and select from the two algorithms available for analysis.  

 

4.3.4.2 MALBoost architecture and interface 

 

The application is built in a python-based Flask microframework, giving easy access to the 

Arboreto suite of tools 78 which runs on a CentOS VM. The application makes use of Redis 

data broker technology in conjunction with Celery task queuing servers to run the models in 

the background. Redis is an open source in-memory data structure store which allows for the 

funnelling of request to the queuing server Celery. The use of task queuing servers such as 

Celery affords the application the ability to receive multiple requests and process them on a 

first come first serve basis. 

 

Request data is temporarily stored using an SQLite database. Transcriptome and regulatory 

list data are removed from the SQL database (DB) post submission to GRN modelling so as 

not to cause data congestion in the DB. Result data and user request information is stored in 

the DB for a period of 3 days after model completion, after which an app schedular will delete 

the data from the DB. The models involved in GRN construction are all implemented form 

Arboreto, which mask use of Scikit-Learn and Dask. A combination of HTML, CSS and 

JavaScript is used to render the functionality and layout of the application for the user front-

end. The architecture of the application is shown in Figure 4.7, illustrating the various 

technologies involved.  
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Figure 4.7: Internal architecture of MALBoost web-based application.  
The application runs on a CentOS virtual machine (VM). Python formulates the core coding language 

of the application, running everything from Flask to task queue servers and GRN model implements. 

The Redis data broker passes data to the Celery queuing server, which tasks individual workers with 

executing the model construction. A selection of either GENIE3 or GRNBoost2 is offered, for more on 

the models refer to 
78

. Transcriptome and regulatory list data are passed to the Celery worker 

environment via the SQLite DB. This data is subsequently deleted upon completion of the GRN 

construction, the results from the GRN is stored in the DB for a period of 3 days. Once model 

construction is completed a download link is provided to the researcher. The web front-end is rendered 

via HTML, CSS, and JavaScript. 

 

Interfacing with the application occurs via a web portal (http://malboost.bi.up.ac.za); most 

modern browsers who support HTML5 should function well with the application and Google 

Chrome and Safari has been validated for this application. The home page of the application 

contains general information regarding the application as well as a navigation bar for quick 

navigation to functions (Figure 4.8A). Contact information and reference material for the 

algorithms used in GRN construction may be found on the home page. Under the submit tab, 

the user will be re-directed to the GRN construction page with a choice of GRNBoost2 or 

GENIE3 (Figure 4.8B). Two files are required from the user: a transcriptome file and a 

regulatory list file. The transcriptome file contains expression values from the user 

transcriptome with Plasmodium gene IDs as the index and samples as the column headers. 

Decision tree-based algorithms such as GBMs are often not sensitive to normalisation, 
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however normalisation is recommended and should be performed by the user prior to 

submission of their data78. The regulatory list file contains a list of candidate genes (gene IDs) 

the researcher has deemed relevant in a regulatory role and will be evaluated as such. This 

list has one gene ID per line of the file and most importantly these genes must be present in 

the transcriptome file as their values are required. Both files must be in csv, txt or tsv format. 

Under the download tab, the user can download a pre-complied GRN constructed with 

GRNBoost2 for P. falciparum (Figure 4.8C). A list of gene IDs of interest to the research must 

be supplied in previously described formats. These genes may be either candidate or target 

genes, the network will filter on both categories. An importance threshold is also required, 

which the user can assess through a drop-down tab. This will filter the network for interactions 

greater and equal to the set value. An example of the output data for both submit and 

download tabs is shown in Figure 4.8D and includes the target genes obtained associated 

with importance values of the interactions and Pearson correlations for each interaction in the 

network. The web page also includes a ‘how’ sections where instructions for are captured. 
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Figure 4.8: MALBoost web-based application for GRN construction in P. falciparum.  
A) Website home page with navigation bar and description of the application. Contact detail, about and 

a how to guide is found on the home page along with reference material to the GRNBoost2 algorithms 

paper http://malboost.bi.up.ac.za. B) The submit tab where researchers can construct their own GRNs 

base either on GRNBoost2 or GENIE3. Submission of transcriptome as well as a list of candidate genes 

(suspected in a regulatory role) is supplied as either tsv, txt or csv format files. C) Download tab where 

researchers can download results based on a pre-compiled GRN. Researchers supply a list of gene 

IDs which they are interested in and apply an importance threshold which will download the resulting 

network. D) Results format from the network (either constructed or pre-compiled). TF = Transcription 

Factor or candidate gene, target = target gene, importance = importance value assigned by the selected 

model, corr = Pearson correlation of the interaction. 

 

4.3.4.3 MALBoost usage in GRN construction for transcriptional regulator 

 

To validate the accuracy of the tool, MALBoost was interrogated with a known gene regulator, 

the AP2-G transcription factor, which was used as candidate and for which the targets were 

TF target importance corr

PF3D7_1222600 PF3D7_1321300 56.9619313042187 0.8690100269079

PF3D7_1222600 PF3D7_0812100 55.4592537020006 0.749526280834246

PF3D7_1222600 PF3D7_1007100 54.1497473736032 -0.747059939342631

PF3D7_1222600 PF3D7_0619800 52.3134943752132 0.783386332562061

PF3D7_1222600 PF3D7_0403400 49.0932579837013 0.873027110640988

PF3D7_1222600 PF3D7_1144100 47.1916174281987 -0.818000767250385

PF3D7_1222600 PF3D7_0930500 47.1409936105864 0.812369873190926

PF3D7_1222600 PF3D7_1139800 45.5498739602193 0.738025087406566

PF3D7_1222600 PF3D7_1205800 42.5765853788845 0.816849571956323

PF3D7_1222600 PF3D7_0220800 40.8779778424593 0.687365636563634

PF3D7_1222600 PF3D7_1006600 39.9494569096959 -0.742741987066088

PF3D7_1222600 PF3D7_0931000 39.5056897248399 0.824497785943349

PF3D7_1222600 PF3D7_0301300 38.0775789455057 0.861399032457424

PF3D7_1222600 PF3D7_0811300 37.5284513050382 0.886495364760708

PF3D7_1222600 PF3D7_1472200 37.0724745256699 0.763862593464641

PF3D7_1222600 PF3D7_0402300 36.453835382632 0.711502018892351

PF3D7_1222600 PF3D7_0518000 36.2926095849848 -0.439591208340639

PF3D7_1222600 PF3D7_1439300 35.9775513034762 0.799545138727022

PF3D7_1222600 PF3D7_1119100 35.8269132654394 -0.645326876418422

PF3D7_1222600 PF3D7_1218200 35.8131972003171 0.833286805441006

PF3D7_1222600 PF3D7_1454600 35.711185592434 -0.648098982485987

PF3D7_1222600 PF3D7_1364200 34.4739148138976 0.846262358283691

PF3D7_1222600 PF3D7_1102500 32.993873863226 0.780372861486635

PF3D7_1222600 PF3D7_1429600 32.1966126753393 -0.733679218263369
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then probed in the tool. AP2-G is a known regulator of sexual commitment in Plasmodium 

parasites37,181 and was found to bind upstream of a specific subset of P. falciparum genes and 

associated with an increase in the transcript abundance of these genes38. Here, a GRN was 

constructed from 49 RNA-seq samples encompassing both asexual and sexual blood-stage 

development (Chapter 3) and the target genes of AP2-G were extracted from the GRN output 

(Figure 4.9). Using >30 importance as a highly significant guided threshold resulted in the 

identification of 28 putative targets, of which 5 have empirical ChIP-seq data showing their 

promoter regions are bound by AP2-G. This constitutes a significant overrepresentation 

(P<0.05) of known AP2-G targets bound in sexually committed ring-stage parasites and two 

of these genes were also differentially expressed following AP2-G genetic perturbation (Figure 

4.9A&B). Comparatively, using Pearson correlations to investigate showed the 28 most 

correlated transcripts with AP2-G over the full transcriptome only contained 3 ChIP targets 

and none were perturbed following AP2-G knock down. The top 100 interactions included a 

further 11 AP2-G ChIP targets, but these were not significantly enriched above a random 

chance of occurrence (Figure 4.9B). Interestingly, targets that were bound uniquely by AP2-

G rather than in overlapping regions with a second transcription factor, AP2-I, were also 

overrepresented although not quite significant (P<0.1). However, targets of AP2-I either 

shared with AP2-G or unique to AP2-I were not overrepresented in the putative targets (Figure 

4.9A). These results suggest that MALBoost could pick out some directly regulated transcripts 

within bound target genes of transcription factors. 

 
While the AP2-G bound genes are of interest for direct genetic regulation by the AP2-G 

transcription factor, probing into the top target genes (>30 importance) of AP2-G also yield 

interesting implication for downstream regulation. In addition of the 5 directly-bound AP2-G 

ChIP targets, a further 7 of the 28 putative targets were transcriptionally effected following a 

genetic knock-out of EBA175 (pf3d7_0731500) (Figure 4.9C), an AP2-G ChIP target which 

regulates parasite invasion182. Furthermore, the putative targets were primarily (16/28) 

transcriptionally abundant in gametocytes (Figure 4.9C) the stage in which AP2-G is expected 

to regulate gene expression and it is possible that a factor downstream of AP2-G also 

regulates these targets directly, i.e. an epigenetic regulator (hda1, pf3d7_1472200) or post-

transcriptional regulator (caf1, pf3d7_0811300). This suggests that MALBoost was able to find 

many real targets of sexually committed parasites even in bulk RNA datasets. 
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Figure 4.9: MALBoost results for AP2-G GRN.  

A) The number of ChIP-targets for AP2-G and AP2-I that were within the top putative target genes of 

AP2-G either by importance or using top interactors were tested for significant overrepresentation using 

a two-tailed Fisher’s exact test (#=P<0.1, *=P<0.05). B) Distribution of importance over Pearson 

correlation for the investigated genes (5142) with ChIP-targets (ChIP) and ChIP-targets that were 

differentially transcribed following AP2-G knock down (ChIP-diff) highlighted. Solid line=>30 importance 

threshold, dashed line = Top 100 interactors. C) Genes above the 30 importance threshold were 

ordered by decreasing importance and Pearson correlation shown along with hits in AP2-G ChIP-seq, 

differential transcripts in the AP2-G knockdown, EBA175 KO, and the stage at which the transcripts 

peak in abundance. 

 

4.4 Discussion 
 

The use of GRN analysis in Plasmodium research has not been frequent while most fields 

have benefitted from this line of inferential reasoning. Many experimental investigations 

regarding regulatory mechanism and co-expression studies have been conducted, but the 

utilisation of GRNs remain scarce. Previously we used DBNs and weighted correlation 

networks to gain some understanding and insight into transcriptional regulation, particularly 

during gametocyte development, but not exclusively (Chapters 2&3). Many of these findings 

resolved some specific regulatory mechanisms such as the role of Ca2+ signalling cascades 
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with assorted kinase interconnected with transcription factors such as MYB1, ApiAP2’s as well 

as epigenetic modifiers such as SET9 and SAP18 for their roles in cell cycle proliferation 

(Chapter 2). We established key transcription factors and target genes during gametocyte 

development as well, with some level of inference regarding uncharacterised DNA-binding 

proteins, which may be involved in regulation (Chapter 2&3). Two notable drawbacks were 

encountered during these analyses which are unique to either DBNs or Co-expression 

networks. Co-expression networks seldomly deal with predictability of the 

relationship69,164,183,184. The networks capture a relationship but cannot accurately define a 

plausible causal root. It is merely noting the co-occurrences of transcripts which may have 

significant relation to one another or not. DBNs on the other hand do establish an element of 

predictability which would ascribe some root causal inferences73,76,92, however these networks 

are computationally exhaustive to perform at scale. This resulted in the testing of a small pool 

of target genes and an even smaller pool of regulatory candidates. Evaluating the full 

transcriptome with the maximum suspected pool of regulatory candidates, was 

computationally sub-optimal.  

 

Increasing our scope for transcript regulation inference with the inclusion of the largest group 

of candidate regulatory genes and the entire transcriptome, required the use of supervised 

machine learning techniques such as GRNBoost2. The advances of GRNBoost2 in terms of 

speed and size of analysis greatly exceeded that of DBNs, with the added function of 

predictability inference which is lacking in co-expression networks78. The construction of a 

global GRN as a result of a single analysis capturing both developmental phases would within 

reason produce directly comparable results for all the interactions generated. 

 

Heterogenous sampling is often used for these kinds of networks and in particular for 

GRNBoost2 (then version 1)79 matching the sampled datasets used here. Sample size 

remains a concern when dealing with machine learning algorithms. Gradient boosting 

algorithms have been shown to be successful with samples sizes as small as 25185, though 

the added effect of sample heterogeneity and size is sure to reduce the power of the 

evaluation. The conventional wisdom posits that the greater the sample size the more reliable 

the results. Unfortunately, not many RNA-seq gametocyte datasets exist for P. falciparum, 

which is why our in-house data (Chapter 3) was generated to address some of the shortage. 

Fortunately, DNA-microarray datasets always serve as an independent sanity check regarding 

patterns and targets derived such as with Figure 4.5.  

 

A minor concern for this study was the performance of GRNBoost2 on the relevant dataset 

with regards to the importance scores and the assumption of predictability. Since the metric 
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produced from the analysis is essentially a modified feature importance score, we do not have 

a clear sense of the model performance in each iteration for predicting the outcome. Meaning 

if we train a model of 124 genes on target x, how well did the model manage to predict the 

outcome? This validation was done through re-constructing the same Scikit-learn based GBM 

models using the same parameters as for GRNBoost2 and calculating the K-fold cross 

validation sets. A normalised root mean square error (NRMSE) was used alongside a 95% 

prediction interval (data not shown). The inferred importance value appears to have captured 

this error as the error reduced with increase in importance. This validation step re-capitulates 

the original assumptions regarding GRNBoost2 that high importance scores directly relate to 

lower error rates, thus are relevant to the accurate prediction of target outputs.  

 

The global GRN quantified a total of 636 732 interactions for the 124 candidate regulatory 

genes. This vastly exceeds what we were able to quantify with DBNs during the cell cycle and 

gametocyte studies in Chapter 2. This quantification was also achieved off server on a desktop 

computer (Mac mini, 3 GHz 6-Core Intel Core i5, 32 GB DDR4 RAM), with runtime in 9.24 

minutes. This is compared to 48 h runs performed on the DBN studies. This shows the GBM 

based approach is more feasible for GRN construction as this drastically advances the data 

processing and allots more time for analysis. The GRN also showed gains over co-expression 

networks, with co-expression often failing the element of predictability as observed in Figure 

4.2. The analysis shows correlation “loosely” associating with higher predictability (importance 

score), however numerous relationships which correlate strongly were unable to present 

predictability Figure 4.2B. This is an expected outcome as correlation does not equal 

causation, therefore the GRN excavates several more promising interactions.  

 

AP2-O2 was a strong feature for the network, impacting primarily on genes involved in 

cytoskeletal/actin process, suggesting that this TF may be important for the development and 

progression of gametocytes. Given the expression of this TF well into stage V gametocytes, it 

may well be required to continue the cytoskeletal changes required to progress through these 

morphologically distinct stages166. AP2-O3 also showed involvement with genes in the 

cytoskeletal process. AP2-O3 and ARID transcripts appear to share in a consorted effort with 

the regulation of PUF1, pf3d7_1126800 (RNA-binding protein) and EGXP. The inhibition of 

PUF1 also critically affects progression from stage III onwards177. EGXP is also relevant for 

its role in host-parasite immunity. Patients with anti-EGXP antibodies showed a 32% reduction 

in gametocyte volume178. It is possible that ARID and AP2-O3 are both required in their 

regulatory roles for a subset of genes, were AP2-O3 would act as the primary TF and ARID 

assisting in the role of transcription.  
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Utilising the power of the combined dataset produced in Chapter 3 as well as funnelling the 

relevant regulatory candidates across three studies (Chapter 2&3), we could introduce an 

added level of complexity in the form of predictive modelling. The power of the predictive 

modelling expands our knowledge beyond the “guilt-by-association” trappings found in 

correlation-based metrics and resulted in greater scalability than the DBN research previously 

conducted (Chapter 2). This comprehensive GRN denotes the largest of its kind in the field to 

date and the potential for numerous investigations beyond the examples highlighted here are 

interesting research prospects.  

 

Access to tools for non-Bioinformatic based researchers often proves the “hurdle”. Here, we 

endeavour to provide greater access to tools such as those in the Arboreto suite, with the 

potential for tool upgrades in the platform. This provision is setup through a web application 

interface named MALBoost after the GRNBoost-based architecture at the core of the 

application. The tool is intended for use by Malaria transcriptomics researchers and the 

provision of a pre-compiled GRN, the very network constructed in this chapter.  

 

The application framework focused on ease of implementation and maintenance. I built a 

Python-Flask application to provide both advantages as Python-Flask is a popular and well 

documented framework. This would allow future upgradable components to be written as 

simple python scripts which essentially “plug-in” to the application, making the addition of new 

tools simple. Django may also be considered a suitable alternative to Flask, however, requires 

a more extensive setup than Flask. Flask applications are widely used in industry “Apps” 

catering to the needs of mobile “back-end” applications and often used as a framework for 

interfacing with databases 186. Utilisation of a python-based Flask microframework ensures 

easy deployment and the combination of Redis and Celery technologies provide a powerful 

backend capable of running the computationally intensive Arboreto suite. The core software 

of the application (Arboreto and the recommended use of GRNBoost2) has shown 

tremendous promise within the field of cancer research 78,79 and should translate well to use 

with the comparatively small genome and collective datasets in the malaria research field. 

Here we produce and apply a web-based application of this technology to extant malaria 

transcriptomic and ChIP-seq datasets.  

 

The ApiAP2 sequence-specific family of DNA binding proteins provide some of the only 

probable evidence of specific transcriptional regulation in P. falciparum parasites. The AP2-G 

transcription factor is one of the most critical proteins for study as it is essential for progression 

into sexual differentiation.  Previous data also show that this protein directly binds the nuclear 

genome at very specific sites37,38 and influences the transcript abundance of specific genes. 
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Within the very narrow subset of genes that are both directly bound and putatively regulated 

by this transcription factor, our application showed 5/28 genes could be predicted by 

transcriptional profile in bulk RNA-seq datasets alone. Interestingly, while this represents an 

overrepresentation of AP2-G targets in the predicted dataset, the algorithm did not identify 

over-representation of AP2-I in the predicted targets of AP2-G, despite 35% of AP2-G genome 

regions also being bound by AP2-I10. In addition, probing into the unbound predicted target 

genes also provided interesting results as 7 more were possibly indirectly affected, as they 

were transcriptionally perturbed following genetic knock out  of EBA175 (pf3d7_0731500), a 

gene regulated by AP2-G182. Overall, these results suggest MALBoost can discern direct and 

indirect effects of transcriptional regulators within a complex sample of transcriptome datasets 

and provides independent analysis of transcriptional variation that can be explained by the 

expression of a singular transcriptional regulator within complexly regulated genesets. The 

main intended use of this application would be to assist in researcher “think tanks” or 

“brainstorming sessions” whereby researchers prioritise genes they which to experimentally 

investigate through construction of custom GRNs. This effectively creates a pseudo-simulation 

environment for quick testing and experimental prioritisation strategies. 
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Chapter 5 
 

Concluding discussion 

 

The P. falciparum parasite is well known for its complex life cycle and a wide array of 

developmental phases166. The molecular drivers behind this complex development remains a 

relevant research focus, given that for instance, so few transcription factors have been 

identified for P. falciparum that could explain the gene expression patterns underlying the 

different stages of development. It would also stand to reason that the chromatin landscape 

is expected to impact regulation during gametocyte development, however this landscape is 

only partially characterised134,187,188. Post-transcriptional regulation mechanisms are also only 

partially understood, though their involvement is certainly implied as exhibited with mRNA 

decay studies48,50. The added complexity of non-canonical regulatory mechanisms such as 

lncRNA and how little is known for gametocyte development present with a knowledge gap in 

our understanding of gametocyte biology42. We addressed some of these knowledge gaps in 

various ways, primarily through GRN analysis applied to different life cycle phases. 

 

In chapter 2 we explored the useability of DBNs for both asexual and sexual phases of 

development, resolving numerous regulatory elements for each phase. We identified early 

regulators involved in the G1/S phases transition and molecular regulators of a newly identified 

cell cycle checkpoint. Reconstruction of the sequential events following cell cycle progression 

post the G1/S phase and cell cycle re-entry, proved to be a complex series to resolve. The 

DBN proved an appropriate choice for such a complex problem as they are purposely built to 

resolve time based sequential dependency in the data. Similarly, sexual development which 

is also a time-based progression process, benefited from using DBN analysis and time course 

data. Interrogating the relevance of ApiAP2 transcription factors during gametocyte 

development using the DBN approach, resolved more robust associations than prior attempts 

to deconvolute the dataset105.  

 

The ability of DBNs to capture the directionality of the relationships also produce fruitful 

interpretations as repressive interactions are often hard to determine and ascribe, particularly 

the role of ap2-g2 and pf3d7_0611200 and repression of asexual transcripts during 

gametocyte development. Although DBNs are often difficult to construct or execute, their 

interpretation is often intuitive and easy to perform. This greatly increases the speed of 

conclusions during analysis and interpretations of the data become easy to contextualise. The 

most significant drawback with using the DBN approach, was scalability of the analysis.  
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The scalability and speed constraints may in part be due to the R build not being suitable for 

larger datasets, however, the algorithm itself proves a computationally expensive one73,75,92. 

Opting for a DBN build in a compiler language may have aided speed and scalability, but the 

algorithm does have some inherent scale/speed issues which are well documented73. DBNs 

exist in many different configurations, using different Bayesian structure search algorithms 

with GRENITS employing a MCMC approach. Improvements to the DBN approach exist in the 

form of reversible jump Markov Chain Monte Carlo (RJMCMC) which GRENITS does not use, 

however the use of Gibbs Variable Selection by the algorithm does aid in the sampling from 

correct conditional distribution73,109. Other additional components have been added to DBNs 

over the years such as the use of Bayesian Principle Component Analysis (BCPA), which is 

more relevant to imputing missing values (not relevant to this work)73. All things considered 

the use of GRENTIS proved to be fruitful in our analyses, even though the scalability suffered 

during the course.  

 

Following our newfound understanding of the different life phases of the parasite development 

in human hosts, we aimed to contrast the developmental phases against one another in a 

balanced way, rather than studying the phases in isolation. Integrating data across 

experiments and platform differences is often difficult. To circumvent this issue, we chose 

appropriate datasets and tested several normalisation methods before settling on VST, that 

produced the most comparable distribution between samples. In addition, as the bulk of RNA-

seq experimental datasets available were conducted on the asexual phase of development, 

we contributed a full time-course gametocyte bulk RNA-seq dataset to enrich the data for 

gametocyte development which we combined with relevant asexual proliferative RNA-seq 

data in a balanced manner, as to not overrepresent on phase over the other. We could then 

accurately contrast and compare the asexual and sexual phase of P. falciparum development 

to interpret elements which seem conserved between phases, unique for phases or which are 

in flux during various stages across both phases.  

 

This level of resolution is often missed when studying one phase in isolation as many of the 

genes prove to be active in other phases of development and this often limits the conclusions 

of studies. Using a balanced, contrasting dataset in an unsupervised model such as the 

weighted co-expression network provide many interesting self-organising relationships for 

inquiry. Many of the genes required for RT stages for example, were often required during 

gametocyte stages as well, with these roles highlighted more clearly in this model than our 

prior work which focused on one phase at a time. It became clear that genes which are crucial 

in gametocytes, may also have functional roles in other stages. It is easy to overlook these 
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genes which appear at first glance to be redundantly expressed across multiple stages. 

However, several of these shared genes appear to be strong candidates in the gametocyte 

subnetwork, including ApiAP2 DNA binding proteins, that are often phenotypically essential at 

a specific point in development, despite being expressed in multiple life cycles stages41,134. It 

is then possible that this observation might hold true for other regulators identified from the 

subnetwork.  

 

As a higher-level evaluation of transcriptional control, we investigated neighbouring gene pair 

expression patterns, with 286 genes pairing in a co-expressed manner which either fit a head-

to-head or tail-to-head configuration. The hypothesis would follow that gene pairs in this 

configuration which strongly co-express would possess a greater likelihood of sharing a 

promoter. Although independent transcription always remains a possibility for these pairs, it 

would stand to reason that shared promotors may be more likely, particularly so for head-to-

head configurations. These head-to-head configurations have generally short distance 

between gene start points with the existence of bi-directional promoters possibly explaining 

the strong correlation between these gene pairs. Experimental confirmation regarding shared 

promoters would prove an interesting future research prospect.  

 

The discovery of potentially novel lncRNA in gametocytes and their related genes during 

mature gametocyte development posits an interesting avenue for future research. The role of 

lncRNA in gene regulation, has been characterised as both gene silencing or gene activating 

in P. falciparum. The most prominent example of transcriptional level gene regulation is; 

telomeric/subtelomeric var gene silencing using intron-derived lncRNA ultimately resulting the 

recruitment of histone-modifying enzymes such as pfkmt1 which generates heterochromatin 

via H3K9me3 mark deposits63. Conversely activation of var genes occurs (internally located) 

through the use of lncRNA189. Here intron-derived antisense lncRNA was used in an 

exogenous plasmid to activate var genes. The juxtaposition between these activation and 

repression mechanisms, would appear to be explained by the location of the var genes 

themselves, internal vs telomeric42. These findings show that lncRNA and their gene 

regulatory effects are very complex and difficult to extrapolate without direct evaluation. This 

presents with difficulties in interpreting the lncRNA co-expression data, as both repression 

and activation remain possibilities. It’s therefore not clear whether co-expression or anti-

correlation patterns would be evidence of activation or repression or indirect/downstream 

effects.  

 

Regulatory candidates derived as outcomes from DBN and WGCNA studies, informed our 

strategy to construct a more sophisticated network with GRNBoost2. This approach was 
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beneficial as we could scale the analysis to include all the proposed candidate genes, as well 

as all available target genes shared across datasets. What was clear from the preliminary 

results of the GRNBoost2 analysis is that the relationships went beyond “guilt-by-association” 

assumptions as found in correlations. The WGCNA does attempt to reduce some of these 

biologically coincidental relationships through accounting for the topological scale and 

transforming to a scale free topology. However, the calculations at the core of the approach 

are not directional in nature and will not indicate if the relationship is causal. Tools that attempt 

to predict the outcome as part of their framework, retain the ability to reconstruct the 

observable data to an extent and make for easier interpretations regarding causal 

relationships. These reconstructions at the root level posed an important question regarding 

the use of GRNBoost2, which was the validity of the individual model constructions 

themselves. 

 

Given that GRNBoost2 uses an iterative approach to evaluate the model (regulatory genes) 

as x with each individual target gene (y) across all samples, the performance of each iteration 

needed to be evaluated rather than assumed. If the model was poor at predicting the target 

gene in the iteration step, then the interaction scores would have been assumed to be low. 

We evaluated this by reconstructing the iterative process (using similar parameters) and 

calculated the NRMSE and 95% prediction intervals for each target gene and concluded that 

the low interaction scores associated with worse predictions. Thus, holding the original 

assumption that high importance scores will correlate with more reliable models for 

GRNBoost2 performance and appropriateness.  

 

This importance score was informative in prioritising the candidate genes in the network, not 

just on the basis of individual interactions, but overall interactions for each candidate as some 

candidates appeared to have a larger role in regulation. In addition to prioritisation of candidate 

genes, the use of an established tool provides some confidence in uncharted analysis where 

little is known about P. falciparum gene regulation at the interaction level. Secondary benefits 

of using ensemble learning algorithms is their noteworthy lack of sensitivity to 

normalisations185. In principle this would mean that the algorithm would produce the same 

findings pre- and post-normalisation. This was not a point of contention for our network as we 

used a robust normalisation strategy across multiple datasets which perform well in co-

expression analysis but is indeed an added benefit of using this approach.  

 

Ultimately with principled level understanding of this approach, researchers can make great 

strides in their own research. Particularly those who seek to understand the influence of 
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regulatory genes on other genes during any given developmental phase. The constraint often 

presents itself in a lack of familiarity with scripting languages, although GRNBoost2 is a very 

comprehensive library, a certain amount of Python knowledge is required to run the analysis. 

It is therefore important to make tools of this nature as broadly accessible as possible. This 

often requires simple graphic interfaces to give users the power of the analysis without having 

to learn an entirely new discipline. This is what we aimed to achieve with MALBoost. The 

framework offers researchers the ability to effectively simulate experiments by predicting the 

effect of their proposed regulatory candidates on target genes. This could prove to be a major 

optimising step in experimental design. Improvements regarding the MALBoost framework is 

also expected to be implemented over time. Expansion of the analysis repertoire such as the 

inclusion of DBN (for small time courses), basic network statistical breakdowns and 

visualisation options may greatly improve the user experience adding greater value to their 

research.  

 

In conclusion, we explored several interesting approaches to construct GRNs for the sexual 

and asexual developmental phases of P. falciparum, resulting in a detailed description of 

regulatory events that shape the parasite’s life cycle. We used DBNs to deliver reliable and 

robust results by asking specific, small-scale biological questions which allowed us to identify 

a few key regulators that can be further investigated. We then probed an unsupervised 

correlation-based approach that could be adopted at large scale which was very useful in 

making between stage and phase comparisons, but this correlation had its own limitations in 

that the relationships often lacked explanatory power. Ultimately, we constructed an ensemble 

based GRN as the most favourable for in-depth analysis at scale. This final approach allowed 

for a fine separation of molecular regulators involved in sexual, asexual development or both 

with high accuracy and at large scale. We believe that the candidates and processes we 

highlight in this thesis constitute numerous avenues for future research in way of the novel 

regulators that can be characterised in future studies.  
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