
Greedy Algorithm and Model for Analysis of a Bus
Fleet’s Operations

Duncan McGladdery

A project report in partial fulfilment of the requirements for the degree

Baccalareus (Industrial Engineering)

in the

Faculty of Engineering, Built Environment, and
Information Technology

University of Pretoria

September 28, 2017

Executive Summary

Bus Company (BUSCO) approached Fourier-E, an industrial engineering company, to
develop and optimise the Duty Master for their Sowetan operations. The Duty Master
is a scheduling blue print that dictates the operations and management of a company’s
bus fleet. Through the manipulation of positioning routes and depot allocations, a Duty
Master should minimise distances travelled and fleet size. In doing so, operating costs
are reduced. Fourier-E had already developed their own algorithm for BUSCO’s Sowetan
Duty Master, which had resulted in substantial savings in the number of busses required
to complete all revenue routes and total distances travelled. However, the run-time of
their model of approximately 20 minutes to generate a solution is a serious limitation and
prohibitive for client use.

The primary aim of this project was to develop an online user-friendly model to en-
able BUSCO to rapidly solve their fleet scheduling requirements. Specifically, the new
algorithm had to be capable of generating a solution for the Duty Master in less than ten
seconds. To accommodate the reduction in run-time, Fourier-E specified that the devel-
oped algorithm must generate a solution which is at least 80% as good as their existing
one in terms of busses saved and positioning kilometres driven.

The problem of developing the Duty Master can be modelled as a Mulit-Depot Vehi-
cle Routing Problem with Pickup and Delivery, Time Windows and Intermediate Facili-
ties (MDVRPPDTWIF). To solve the problem, a greedy-heuristic was developed, called
“Greedy-Bin”. Computational tests showed that the algorithm exceeds all Fourier-E’s
specifications and performs particularly well in run speed, whch at 1.23 seconds, is 976
times faster than the existing approach. The Greedy Bin algorithm performs at 88% of
Fourier-E’s with regards to busses saved and 96.7% for kilometres saved. The Greedy-Bin
algorithm met all validation criteria.

In order for clients to access the algorithm, an online user interface was developed which
enables rapid evaluation of various operatonal scenarios. To achieve this, five variables that
can be manipulated by the client were added to the model, namely: bus speed, revenue
routes, loading buffer, distance buffer and day and night depot capacities. Model outputs
are: the number of busses needed to complete all revenue routes, positioning distance,
depot allocations and fleet utilisation throughout the day.

Manipulation of the Duty Master model also demonstrates its capacity to save on oper-
ating expenses by generating alternative solutions for depot allocations. Additionally, the
financial implications of changing bus speeds and manipiulating loading and positioning
buffers are demonstrated. Finally, in an industry where tenders for new revenue routes are
highly competitive, the model can be used to assess the potential financial implications of
adding new routes and in doing so, inform the decission of whether or not to tender for
those routes.

i

Contents

List of Figures iv

List of Tables v

List of Algorithms v

Acronyms vi

1 Introduction 1
1.1 Project Overview . 1
1.2 The South African Bus Industry . 2
1.3 BUSCO and their Duty Master Specifications 2
1.4 Problem Statement . 3
1.5 Research Design and Methodology . 3
1.6 Document Structure . 5

2 Literature Review 6
2.1 The Importance of Modelling and Model Use 6

2.1.1 BUSCO’s intended model use . 7
2.1.2 Pidd’s framework of model use . 7
2.1.3 Classifying the project’s model . 8
2.1.4 Model validation . 9

2.2 Vehicle Routing Problem . 10
2.3 Bin Packing Problem . 10
2.4 Solution Methods . 11

2.4.1 Exact Methods vs Metaheuristics . 12
2.4.2 Metaheuristics vs Classical Heuristics 13
2.4.3 GRASP Metaheuristic . 14

2.5 Fourier-E’s Genetic Algorithm . 15
2.6 Conclusion . 15

3 Development of the Duty Master Model 17
3.1 Defining the Problem Mathematically . 17
3.2 Algorithm . 19

3.2.1 Selecting the algorithm . 19
3.2.2 Algorithm logic . 20
3.2.3 Comparison and validation . 23
3.2.4 GRASP . 26

3.3 User Interface . 27
3.3.1 Interface inputs . 28

ii

3.3.2 Interface outputs . 30
3.4 Connecting the User Interface and Algorithm 31
3.5 Conclusion . 33

4 Results and Discussion 34
4.1 Current Allocation vs Recommended . 34
4.2 Simulations with Changing Day Depot Capacities 35

4.2.1 Depot underutilization . 35
4.2.2 The potential for increasing depot capacity 36

4.3 Simulations with Changing Overnight Depot Capacities 36
4.4 Simulations with Adding Routes . 37
4.5 Simulation for Potential Performance and Implementation 38

4.5.1 Increasing bus speed . 38
4.5.2 Manipulating buffer parameters . 39

5 Conclusion 40

A Python 43
A.1 Algorithm . 43
A.2 Distance Matrix Formatter . 45
A.3 Route Formatter . 46
A.4 Functions For Analysis . 46
A.5 GRASP Controler . 48
A.6 Edit Routes . 48

B Website 50
B.1 Flask Main . 50
B.2 Simulation User Interface . 50

C Industry Sponsorship Form 56

iii

List of Figures

2.1 A Spectrum of Model Use. (Pidd, 2010, p. 16) 7
2.2 Overview of applied methods in absolute and relative numbers. (Braekers

et al., 2016) . 11
2.3 Optimisation Methods (Talbi, 2009, p. 18) 12

3.1 Visual representation of the Duty Master 24
3.2 Transition Distances . 25
3.3 Distances of each Iteration . 26
3.4 Model Input Screen . 29
3.5 Add Route . 30
3.6 Added Route . 30
3.7 Model Output Screen . 31
3.8 Model Flow Diagram . 32

4.1 Recommended Day Depot Allocation . 35
4.2 Recommended Overnight Depot Utilisation 37
4.3 Bus Utilisation Throughout the Day . 38

iv

List of Tables

3.1 Algorithm Results Comparison . 23
3.2 Tour Analysis . 25
3.3 Final Algorithm Results Comparison . 27

4.1 Current Allocation vs Recommended . 34
4.2 Capacity Increase Simulation . 36
4.3 Capacity Increase Simulation . 38
4.4 Varying Loading Buffer . 39
4.5 Varying Distance Buffer . 39

List of Algorithms

1 Best Fit Algorithm For BPP . 11
2 GRASP for VRP . 14

3 The Greedy Bin Algorithm . 21
4 Find Closest Viable Bus . 22
5 Distance Calculator . 23

v

Acronyms

AJAX Asynchronous JavaScript And XML

BF Best Fit

BFSP Bus Fleet Scheduling Problem

BUSCO Bus Company

BPP Bin Packing Problem

CSS Cascading Style Sheet

FF First Fit

GA Genetic Algorithm

GRASP Greedy Randomised Adaptive Search Procedure

HVRP Heterogeneous Fleet Vehicle Routing Problem

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

MDVRP Mulit-Depot Vehicle Routing Problem

MDVRPPDTWIF Mulit-Depot Vehicle Routing Problem with Pickup and Delivery,
Time Windows and Intermediate Facilities

NF Next Fit

NP Non-Polynomial Time

OR Operations Research

P Polynomial Time

SATAWU South African Transport and Allied Workers Union

TOWU Transport and Omnibus Workers Union

VRP Vehicle Routing Problem

VRPIF Vehicle Routing Problem with Intermediate Facilities

VRPPD Vehicle Routing Problem with Pickup and Delivery

VRPTW Vehicle Routing Problem with Time Windows

vi

Chapter 1

Introduction

This project produces an online model for a Mulit-Depot Vehicle Routing Problem with
Pickup and Delivery, Time Windows and Intermediate Facilities (MDVRPPDTWIF) by
developing an algorithm based on greedy logic to rapidly solve a large bus fleets scheduling
requirements. In doing so it facilitates the optimisation of fleet size, positioning routes
and depot utilisation.

1.1 Project Overview

Bus Company (BUSCO) is a South African bus company that operates countrywide.
This project develops the Duty Master for its Sowetan fleet, which comprises of 984 routes
and 430 buses that currently travel approximately 20,000km per day. Fourier-E is an
industrial engineering consultancy company that was awarded the contract to optimise
BUSCO’s Duty Master. The Duty Master is the document that provides the blue print
on how the bus fleet should operate and be managed. It dictates the revenue routes
(transporting customers) that each bus must operate, the times that the busses need to
be in position, the depots that the busses must start and end at, the rest depots that the
busses must visit in the middle of the day and the routes that the busses must take to
get into position, referred to as positioning routes. The high operating costs of the bus
fleet, which includes fuel and maintenance cost and drivers’ salaries, are influenced by the
Duty Master. It is therefore important to develop a high quality Duty Master to minimise
operating costs. Before the commencement of this project, Fourier-E had developed an
algorithm capable of generating high quality Duty Masters for BUSCO. Their algorithm
proved to be profitable by greatly reducing the kilometres driven and number of busses
required to complete the daily fleet schedule; however, the run-time of approximately 20
minutes rendered the algorithm impractical for demonstration purposes to clients.

Following their successful completion of the initial contract, Fourier-E wanted to keep
BUSCO engaged and to further develop their capacity as consultants to the bus trans-
portation industry. Two potential opportunities for future contracts were identified. The
first relates to optimising depot utilisation based on their location and capacities. The
second is the need to have reliable data in order to analyse the implications of investing
in new revenue routes. The aim of the project therefore was to develop a model that
would enable Fourier-E to demonstrate to BUSCO and future clients, that using them as
consultants to optimise their operating systems would be more profitable than the clients
doing it in-house. To achieve this, a model was developed that allows the client to test the
impact on their operating system of making changes to their depots, routes and loading
and distance buffers. It was assumed that if the client could easily see the potential ben-

1

efits that would accrue from changing their operating system, then they would be more
likely to contract Fourier-E to implement them. Requirements for the model were that
it needed to be very easy to use and should require minimal configuration. In the long
term, the model needs to be developed in such a way that a prospective client can do all
the configurations themselves. However for this project, the aim was to create a model
specifically for BUSCO that was preconfigured according to their specifications with re-
gards to their route data (start and end locations, start and end times, distance of each
route and route ID), depot capacities and their specific operational policies. For client-
demonstration purposes, the model had to generate Duty Masters in near-real time while
still producing high quality solution. The development of the model is the focus of this
report.

1.2 The South African Bus Industry

As the South African bus industry is considered an essential service, it is subsidised and
regulated by government (BUSCO, 2017). The government identifies routes and then
makes them available for tender. Bus companies must then tender for the routes and
prove that they have capacity to execute them. A limitation of government regulations of
the routes is that there is very little flexibility in the start time of the routes. This makes
it hard for the fleet manager to schedule the busses, as delaying a trip by half an hour or
so is not an option.

Most of the bus drivers are affiliated with either South African Transport and Allied
Workers Union (SATAWU), or Transport and Omnibus Workers Union (TOWU). The
two unions have a lot of influence over the transportation industry. Their involvement
also makes it quite difficult to retrench workers and change the workers’ contracts. While
acknowledging that it is important to look after the drivers, it adds complications when
trying to implement a Duty Master that is likely to result either in some drivers no longer
being required, or converting some contracts from full-time to part-time.

1.3 BUSCO and their Duty Master Specifications

BUSCO was founded over 60 years ago and is one of South Africa’s largest bus companies,
transporting more than 350,000 passengers per day. The company operates throughout
South Africa. BUSCO operates a fleet of about 1,800 buses and has over 2,000 drivers,
with busses travelling roughly 90 million kilometres a year! Due to the scale of their
operations, small improvements to their Duty Master can have a large impact. BUSCO’s
management believes that their Duty Master is capable of improving as it was developed
by manual methods. BUSCO has individuals that are skilled in doing this, but since
their operations are so large and there are many constraints to consider, computer aided
methods should be able to produce better results. This project demonstrates that this is
indeed the case.

Optimisation of the Duty Master was evaluated against two criteria, making the project
multi-objective. Firstly, the developed model needed to reduce the number of busses
required to complete the fleet schedule. Secondly, the model needed to be able to reduce
the total distance driven by the fleet. The client had specified that the reduction of busses
had to be prioritised over the reduction of kilometres driven. Reducing the number of
busses used will substantially reduce the operational and capital costs. Every bus requires
a driver, regular maintenance and costs about one million rand to purchase (BUSCO,
2017). Additionally, the model needed to efficiently allocate busses to day and overnight

2

depots, which would result in a further reduction in the total distance driven. Reducing
the amount of kilometres driven will save in bus maintenance and fuel. A further benefit of
an efficient bus schedule is the reduction in pollutants. Fossil fuels are a major contributor
to greenhouse gas emissions, which can be reduced by minimising distances travelled.

Unfortunately reducing busses will result in some drivers losing their jobs. This is not
a desired outcome but it can be argued that the leaner a company is, the lower the cost
they can sell their product or service to society. It is hard to predict if BUSCO will lower
their prices or if the leaner operations will increase the job security of the other drivers.
For these reasons and others that will be discussed later, this project will not discuss
utilitarian or capitalist philosophies, but will acknowledge the fact that the results of a
successful project could negatively affect some individuals, specifically bus drivers and bus
maintenance teams.

1.4 Problem Statement

The research question that this project answers is how can we develop a user-friendly
online model to rapidly solve a large bus fleet’s scheduling requirements in terms of opti-
misation of fleet size and distance travelled. The bus fleet’s scheduling requirements will be
referred to as the Bus Fleet Scheduling Problem (BFSP) and its solution is an optimised
Duty Master. The problem arose in response to the consultancy company, Fourier-E,
wanting to retain BUSCO and attract future clients in the bus transportation industry,
by providing them with an easy to use online interface that would enable manipulation of
a set of parameters in order to optimise their Duty Masters. Although Fourier-E had al-
ready developed an algorithm to facilitate this, the run-time of approximately 20 minutes
rendered it impractical in terms of being integrated into an online-tool.

The development of a fast algorithm capable of generating a solution in less than ten
seconds, to address the slow run-time problem of Fourier-E’s algorithm, and the develop-
ment of the online user interface are the primary objective of this project. The integration
of these two objectives results in the Duty Master Model.

To solve the BFSP and hence optimise fleet scheduling in terms of minimising the
number of vehicles and distance travelled, two costs needed to be minimised, namely: the
fixed costs of bus purchase and associated driver salaries, collectively referred to as bus
ownership costs, and the variable costs associated with getting each bus into position in
order to execute the revenue routes, which consists of fuel and maintenance costs. The
model parameters which could be manipulated by the client were identified as: bus speed,
revenue routes, allocation to the day and night depots, and a loading and a distance
buffer. The buffers allow for unforseen delays that could result from complications with
people getting onto busses, or traffic jams and road works that could impact on the time to
complete the route. The model constraints are existing depot capacities and the feasibility
of route sequencing.

1.5 Research Design and Methodology

The main deliverable of this project was the development of a user friendly online tool
that enables the optimisation of a bus fleet’s Duty Master. This deliverable is called the
Duty Master Model.The model developed had to allow clients (in this case, BUSCO) to
manipulate their operating procedures, and in doing so generate new Duty Masters which
then could be evaluated against their existing operations. Operating procedures that the
client can change though the interface that was developed are: bus speed, loading buffer,

3

distance buffer, day and nighttime depot capacities and revenue routes. The model’s
outputs are: number of busses needed to complete all revenue routes, positioning distances,
depot allocations and fleet utilisation throughout the day.

In order to create the model for this project, an algorithm was developed and then
a user interface was built on top of it. While it may have been preferable to use the
algorithm that Fourier-E had already developed, a few problems prevented this. Firstly,
Fourier-E’s algorithm takes on average 20 minutes to generate the solution. This is an
unacceptably long time for the model as clients expect to see results without delay. The
second issue is that Fourier-E will not allow their algorithm to be saved on any devices
other than their own. They are also not willing to allow remote access to their servers.
Bearing these constraints in mind, Fourier-E specified that they wanted a new algorithm
developed with a run-time of 10 seconds or less. It was expected that the new algorithm
would not deliver results as good as Fourier-E’s algorithm owing to it having to run so
much faster and thus some solution quality compromise was made. Fourier-E set a lower
specification limit, namely that the new algorithm must result in savings of at least 80%
of that achieved by their existing algorithm. The aim of this project was to develop the
faster algorithm and imbed the algorithm in an online-tool, to be used by potential clients.

In order to design the model, the methodology presented by Manson (2006) was fol-
lowed. Manson divides the methodology into five phases:

1. Awareness of the Problem. Before the problem can be solved it is vital to fully
understand the problem. For this project, the problem that needed to be solved
was how can a rapid and user friendly online model be developed that would enable
the manipulation of a set of parameters to optimise bus fleet scheduling in terms of
minimising costs by optimising positioning routes and depot utilisation.

2. Suggestion. This phase involves suggesting a potential solution. In order to do
this, a study of previous methods used to solve related problems was undertaken. In
particular, reference to Vehicle Routing Problems and Bin Packing Problems were
studied to provide a foundation for the algorithm. Fourier-E had stipulated that the
model needed to be available online and therefore the need to consider alternative
interfaces, such as a desktop application, was not necessary.

3. Development. This is the phase when the proposed solution is developed. Specifi-
cally, the algorithm and the online interface that takes the user inputs, generates the
Duty Master, and displays the potential benefits of making changes to the client’s
operations, were developed.

4. Evaluation. The solution needs to be scrutinised to make sure it is performing as
it should. In this project, the developed algorithm was evaluated against the per-
formance of Fourier-E’s existing algorithm in terms of run-speed, number of busses
used and positioning kilometers of the fleet. Additionally, results were evaluated
through visual validation of the Duty Master in the form of a graph; the scrutiny
of the operations of 19 busses to test for violation of any constraints, and through a
sensitivity analysis of model performance whilst varying input parameters.

5. Conclusion. During this phase of the project, opportunities in BUSCO’s current
fleet’s operations were identified in terms of optimising the allocation of buses to
depots; identifying times during the day when new revenue routes could be added
without requiring additional busses; and finally, suggesting future projects to identify
optimum locations for depot establishment.

4

As part of the model validation, specific what-if scenarios were analysed. The effect
of changing depot allocations and capacities on total kilometres driven was investigated.
The impact of increasing bus speed and reducing buffer times on reducing the number of
busses needed and total kilometres driven was demonstrated. Finally, the impact of adding
new revenue routes on total busses required and kilometres driven, as well as the model’s
ability to identify the most feasible time of the day to add new routes, were analysed.

1.6 Document Structure

In the next chapter the literature is reviewed in order to establish the type of model
that needs to be developed and the appropriate approach to solving the BFSP. Different
optimisation methods are presented and the benefit of conceptualising the problem as a
Vehicle Routing Problem (VRP) and Bin Packing Problem (BPP) is discussed. The focus
of Chapter 3 is the development of a rapid algorithm and user interface which together
produce the Duty Master Model. Chapter 4 demonstrates the practical application of
the developed model as a tool to aid decision making under various scenarios through the
manipulation of the model’s parameters. In the final chapter of this project, the developed
model is assessed and potential future projects are presented.

5

Chapter 2

Literature Review

The literature review commences with a discussion of the importance of modelling and
the classification of models according to their intended use, in order to identify the type of
model that needs to be developed for this project. The conditions for solving the Vehicle
Routing Problem (VRP) as a Bin Packing Problem (BPP) are then presented. How the
Bus Fleet Scheduling Problem (BFSP) differs from classical VRP is discussed, leading to
the problem being classified as an Mulit-Depot Vehicle Routing Problem with Pickup and
Delivery, Time Windows and Intermediate Facilities (MDVRPPDTWIF). The Greedy
Randomised Adaptive Search Procedure (GRASP) metaheuristic is reviewed as a method
to sole the research problem. The chapter concludes with an analysis of Fourier-E’s existing
algorithm which sets the benchmark against which this project’s algorithm was developed.

2.1 The Importance of Modelling and Model Use

The article by Pidd (2010), “Why modelling and model use matter”, provided the founda-
tion for investigating the requirements of the project’s model. According to the article, an
Operations Research model is an “external and explicit representation of part of reality
as seen by the people who wish to use that model to understand, to change, to manage
and to control that part of reality” (Pidd, 2010, p. 14). The initial role of the modeller
is to identify the part of reality that will be modelled. In this project, the reality that
needed to be modelled was BUSCO’s Sowetan fleet operations under different route and
depot parameters. To achieve this, the model needed to predict how many busses and
kilometres would be saved when the above mentioned parameters were changed.

The traditional method of illustrating models is with white, grey or black boxes that
represent the process being modelled (Pidd, 2010). A white box represents a process that
is fully understood by the modeller. In contrast, a black box represents a process that the
modeller does not understand at all. A white box process can be validated by scrutinising
the model’s internals (for example: equations or logic). Black box processes are validated
by examining the outputs whilst controlling the inputs.

According to Pidd, a limitation of earlier modelling methodologies was that they tended
to be developed for specific cases. Overcoming this limitation, he proposed a framework
that is independent of the nature of the model and that can thus be applied in many
different circumstances. The underlying principle of Pidd’s framework is that it is based
on intended model use; that is, the decisions and processes that the models are intended
to support and, in particular,“the ways in which people will interact with those models”
(Pidd, 2010, p. 14). According to Pidd’s framework, four model archetypes exist, based on
the purpose for which they are used. An understanding of these archetypes, combined with

6

BUSCO’s needs, was necessary in order to understand the project model’s requirements.

2.1.1 BUSCO’s intended model use

The model developed for this project will be used by BUSCO to test the effect of adding
new routes, changing the bus allocations to their depots, changing depot capacities, chang-
ing bus speeds, and reducing the distance buffer and loading buffer. BUSCO will very
rarely want to change the capacities of their depots and will probably only add or remove
routes a few times a year because, as mentioned earlier, the government decides if new
revenue routes should become available. This means that BUSCO will not use the model
on a regular basis but when they do, it needs to be fast and easy to use so that multiple
experiments can be run. By BUSCO using the model to identify the effects of various
manipulations of their operating procedures, Fourier-E is confident that the model will
encourage BUSCO, and future clients, to contract them to develop new Duty Masters
incorporating those changes.

2.1.2 Pidd’s framework of model use

To demonstrate how models are used, Pidd (2010) develops a framework based on two
opposing axes. The axes represent the frequency that the model will be used and the
level of effort required to develop the model. Different types of model-use exist along the
spectrum of the two axes. Figure 2.1 is a visual representation of the spectrum. Pidd
divides the spectrum into four model archetypes: Decision Automation, Routine De-
cision Support, Investigation & Improvement and Provide Insight. He provides
information that makes it easy to classify models into one of these four types according
to intended use and amount of effort required to develop the model. Each type of model
serves a different purpose. Models for Decision Automation generally require a lot of
time to set up as it is important that they are highly accurate. On the other end of the
spectrum are models for Providing Insights.

Figure 2.1: A Spectrum of Model Use. (Pidd, 2010, p. 16)

Referring to the intended use of the BUSCO fleet scheduling model, two of Pidd’s
archetypes were eliminated, namely: modelling for Decision Automation and modelling
for Routine Decision Support. Modelling for Decision Automation was eliminated
as the decision to contract Fourier-E is decided by the client not the model. Since the
model will not be used on a regular basis, modelling for Routine Decision Support was
eliminated as the model’s use is not routine. The remaining two model-use archetypes,
namely: System Investigation & Improvement and Providing Insights, needed
to be investigated before a final decision could be made regarding which to use for this
project as it was not clear which one of those types the BUSCO model fell under.

7

According to Pidd (2010), modelling for System Investigation & Improvement is
the most common model archetype for Operations Research. He explains that models of
this type are used to support investigations that are relatively unique, which may involve
“system design, system improvement or just an attempt to gain understanding of a very
complex situation” (Pidd, 2010, p.18). He argues that these types of models are often
used for a short period of time as they are generally developed to investigate a very
specific problem. They are used in Operations Research extensively because they provide
a structure that allows investigators to better understand the system being modelled and
allows them to perform what-if analyses. The ability to facilitate what-if analyses makes
them very useful for system improvement as the scenario can be investigated before large
amounts of capital are invested. Big decisions are made based on the findings of these
models, so it is important that they are accurate. Pidd highlights that the challenge of
validating System Investigation & Improvement models is that it is often impossible
to compare the outputs of the model to actual data because the scenario being tested does
not yet exist. The way that this problem is minimised, is by doing white box validation
in which the internals of the model are extensively scrutinised.

Modelling to Provide Insights is used for situations that have been termed as wicked
problems. Wicked problems are those where there are two or more stakeholders and all
have different but legitimate ideas on how to solve the problem (Pidd, 2010). The purpose
of developing a model to Provide Insights is to create a structure that allows all parties to
see the perspective of the other parties with the end goal of facilitating consensus between
all parties on what course of action should be taken. Models that facilitate this are often
classified under soft Operations Research as they are based more on human aspects than
data. That being said, there are quantitative models that are classified in this archetype.
This model type is the least intensive to develop as it is expected that the model users will
make the bulk of the decisions and that the model is just there to facilitate the process.

A further consideration of model development is the type of input data required. Col-
lecting data is a time consuming process as it often involves communication between people
or machines and, since most models are data sensitive, formatting the data needs to take
place. Pidd (2010) explains that the more weight the model has on the final decision, the
greater the importance of large amounts of accurate data. As a result, models for Deci-
sion Automation are the most data intensive, whilst models which Provide Insights
are the least. For modelling to Provide Insights, Pidd allows for a relaxation of data
accuracy as the users have a lot of say in making the decision and there are often cases
where accurate data is simply not available.

2.1.3 Classifying the project’s model

Having outlined the differences between the System Investigation & Improvement
and Providing Insights archetypes, the BUSCO model could be classified. A criterion
for the model was that it be configured to allow the client to do what-if analysis on
scenarios such as adding routes or changing the location or capacity of depots. The ability
to do these investigations would suggest that the model should be classified as a model for
System Investigation & Improvement. However this was not the case, as the main
use of the model is to entice the client to contract the consultant, Fourier-E, to develop
the new Duty Master or to investigate further the effect of changing parameters. Bearing
this functionality in mind, Fourier-E stressed that the intention of the model was just
to demonstrate an estimate of what Fourier-E think they could achieve if they did a full
Operations Research investigation. Therefore, the model that was developed will Provide
Insights to encourage BUSCO to contract Fourier-E to undertake a deeper investigation,

8

rather than the client attempting to solve the problem by themselves.

2.1.4 Model validation

Validating models is crucial because if users do not trust the output they will not use
the model. There are many methods that can be applied to validate models and these
methods are often customised to the specific problem; however, they normally apply some
type of white or black box validation. When deciding how the model would be validated
Pidd explains: “There seems to be general agreement that, in practice, fitness for purpose
is the main focus of validation efforts and also a realisation that no model will ever be
wholly valid, except within defined circumstances” (Pidd, 2010, p.19).

When models are used to answer what-if scenarios that do not currently exist the
models tend to be harder to validate. The general assumption is that if the model works
for the as-is configuration of the process, it should provide a reasonably good solution
for what-if scenarios. Apart from the simplest of cases, this is a weak assumption and
Pidd (2010) suggests that the complexity of models should be investigated and the more
complex they are, the greater is the need to scrutinise the outputs of the model under
controlled inputs. This results in the process being represented by a dark grey box.
Understanding what makes a model complex is not as straight forward as one would
think. At face value one could assume that complexity is just a matter of scale, but this
neglects the interactions that components have with each other and the cognitive abilities
of the modeller. To clarify the issue, Pidd (2010) mentions three definitions of complexity
and then brings them together by defining a complex model as one that this is likely to
be complicated, hard to understand and model, and may require multiple representations.
It is important to understand the complexities of the system because there is a trade-off
between accuracy of the solution and the time it takes to run the model. Due to the
inherent complexity of most processes, it is rarely viable to develop a model that is 100%
accurate. For this project, Fourier-E set a lower bound for accuracy for the new model at
80% of their existing algorithm. What this means is that they were prepared to accept a
20% drop in quality of solution in favour of a model that is fast and easy to use. Fourier-
E’s specified solution time of 10 seconds, compared with their current soluntion time of
20 minutes, clearly demonstrates the unfeasiblity of their existing algorithm for client
demonstration purposes. The practice of establishing trade-offs in model development
was commented on by Box et al. (1987, p.424) who boldly stated: “essentially, all models
are wrong, but some are useful”.

The project model’s fitness was evaluated according to how quickly and accurately it
could solve BUSCO’s fleet scheduling problem compared with Fourier-E’s existing algo-
rithm’s solution. Pidd mentions that in most circumstances validating models to Provide
Insights is problematic due to the bulk of them being based on soft data. This was not
the case for this project as Fourier-E had provided the output of their algorithm. This
allowed for a black box analysis whereby the output of the model in terms of minimising
the number of busses needed and kilometres driven to execute BUSCO’s fleet schedule
could be compared to that of Fourier-E’s existing algorithm.

Ultimately all models have to add value, in fact they need to add more value than the
effort required to make them. The main purpose of modelling for insight is to help two
parties understand each other. This aligned very well with Fourier-E’s objective. If clients
have a good idea of what Fourier-E can achieve and the model’s solution seems better
than what the client thinks they can achieve in-house, then the client is likely to contract
Fourier-E to optimise their Duty Master.

9

Having discussed the performance requirements of the model, the next challenge of the
project was to create an algorithm that could achieve those requirements.

2.2 Vehicle Routing Problem

In order to develop the algorithm it was important to first understand the type of problem
that the algorithm needed to solve and the methods that have been used to solve those
types of problems in the past.

The project’s BFSP is a variant of the well studied field of VRP. The classical VRP
aims to minimise the distance travelled by a fleet of vehicles as they make deliveries
to customers. There are many variants of the VRP and it is important to identify which
variants are present in the BFSP. Applying the classification used by Braekers et al. (2016),
the four variants of the VRP that are present in the BFSP were identified as follows:

1. In the classical VRP the customers are represented by nodes that have a single
location. In the BFSP this is not the case, because when passengers travel on a bus
they are moved from one location to another. This variant is known as the Vehicle
Routing Problem with Pickup and Delivery (VRPPD).

2. The classical VRP has a single depot. This project’s problem however, deals with
multiple depots. When there are multiple depots the problem is called a Mulit-Depot
Vehicle Routing Problem (MDVRP).

3. A further attribute of the BFSP is that each route has a fixed start time, so each
bus needs to be in position to load passengers before the start time. This introduces
a time constraint and these problems are referred to as the Vehicle Routing Problem
with Time Windows (VRPTW).

4. Finally, each bus needs to visit a depot in the middle of the day so that the driver
can rest. This adds another variant called the Vehicle Routing Problem with Inter-
mediate Facilities (VRPIF).

Bearing these variants in mind, BUSCO’s BFSP can be classified as a MDVRPPDTWIF.
A further distinction of the project’s problem compared with classical VRP, is that

unlike classical VRP where there is only a single objective to minimise distance, in the
BUSCO Duty Master problem there are multi-objectives with the primary goal being to
to minimise bus numbers. To solve this, the Bin Packing Problem was considered.

2.3 Bin Packing Problem

Martello and Toth (1990, Chap 8) describe the BPP and methods that have been devel-
oped to solve it. The objective of the BPP is to fit objects into as few bins as possible.
By conceptualising a bin as being a vehicle and the objects with varying volume as the
customers with varying time window constraints, the VRPTW can be modelled as a BPP.
There are three common approximation strategies used for this. They are Next Fit (NF),
First Fit (FF) and Best Fit (BF). Next Fit adds the objects into the current bin until
the bin does not have capacity to add another object. At that point a new bin is opened
and filled until yet again no more objects can fit and then a new bin must be opened.
The process continues until all objects have been placed in bins. The problem with this
method is that as soon as a new bin is opened the previous bins are never looked at again
and since the objects can be of varying sizes, it is often possible to place an object in a bin

10

that is not evaluated. The First Fit method was developed to solve this exact problem,
because it first tries to place the object in the first bin, but if it cannot fit there, it then
moves onto the next and so on until it finds a bin into which it can fit. Only after looking
at all the bins will a new bin be opened if the object could not be placed. The Best Fit
method uses very similar logic to the FF with the difference being that the BF places
the object in the bin that will have the smallest available capacity after the allocation,
whereas the FF places the object in the first available bin. The logic of BF is presented
in Algorithm 1

Algorithm 1: Best Fit Algorithm For BPP

Input : Objects with varying volume ObjObjObj
Output: Solution SSS∗

for object in ObjObjObj do

if object can be placed in an open bin then
find bin that will have the smallest available capacity after allocation;
allocate object to the found bin;

else
open new bin;
allocate object to new bin;

SSS∗ ← compile solution;

return SSS∗

The performance of the NF, FF and BF can be improved by sorting the objects in
descending order based on their size. Sorting the objects in this manner results in the
methods being renamed to NFD, FFD and BFD where the D represents the word de-
creasing. All of these methods are constructive and deterministic so can rapidly produce
solutions that can be validated through white box analyses. Both of these traits were
considered ideal for achieving the project’s model requirements of being fast and user
friendly.

2.4 Solution Methods

A complete solution method for the variant of this project’s VRP has not been found.
Braekers et al. (2016) revealed that in recent years 71.25% of VRP have be solved with
metaheuristic, 17.13% with exact methods and 9.79% with classical heuristics. All the
aforementioned methods to solve the BPP are classified as classical heuristics. Figure 2.2
is Braekers et al. (2016)’s summary of solution methods. The three approaches to solution
methods were studied in order to select an appropriate method to solve BUSCO’s fleet
scheduling problem.

Figure 2.2: Overview of applied methods in absolute and relative numbers. (Braekers
et al., 2016)

11

2.4.1 Exact Methods vs Metaheuristics

Talbi (2009)’s book titled “Metaheurisitics from Design to Implementation” stresses that
it is important to understand the type of problem that is to be solved before any effort is
put into solving the problem. The reason for this is that many people make the mistake of
jumping to metaheuristics to solve problems that can be solved with exact methods. Exact
methods provide a solution in optimality. What this means is that the global optimal
solution has been found. The alternative to exact methods is approximate methods.
Metaheuristics fall under this catagory. For these methods there is no way to guarantee
that the algorithm will provide a solution in optimality, unless the problem can also be
solved with exact methods or there is no degree to which various solutions can be measured.
An example is an algorithm that solves a large Sudoku: the answer to a Sudoku is either
right or wrong, so no solution can be considered better than another. Talbi (2009) provides
an overview of the various methods to solve optimisation problems which are illustrated
in Figure 2.3

Figure 2.3: Optimisation Methods (Talbi, 2009, p. 18)

Apart from a few cases where exact methods take too long and the quality of solution
is not a top priority, all problems that can be solved with exact methods should be.
Approximate methods should only be used when exact methods will not work.

In order to make the initial selection to use exact methods or approximate for this
project, it was first necessary to classify the problem being solved as Polynomial Time (P)
or Non-Polynomial Time (NP). The main distinguishing factor between these two types of
classifications is how well the algorithms developed to solve them function when the size of
the problem increases. P class problems scale very well as the complexity of the problem
follows some polynomial as the size increases, whereas NP problems grow exponentially.
The result of this exponential growth makes NP problems unsuitable for exact methods
once the size of the problem is no longer small. There is extensive documentation available
that helps classify problems as P or NP (Talbi, 2009). If the classification of the problem

12

being solved is not documented, an investigator can apply complexity theory to make the
classification. A further distinction can be made within the NP class. If it is impossible
to prove in polynomial time that the solution to the problem is the global optimal, it is
considered to be an NP-hard problem. Most VRP problems are considered to be NP-hard.
Sudoku can also be used to illustrate the difference between NP-hard and NP. Solving a
Sudoku is considered to be NP because if the solution to a Sudoku is given, it is quite simple
to prove that there is no better solution. In comparison, it is not possible to prove this for
most VRPs, hence they are considered NP-hard. There are some cases where small VRP
problems can be solved with exact methods but these are rare and were not applicable to
this project. An understanding of P and NP is vital to participate in discussions about
optimisation as erroneously classifying the type of problem will result in the application
of inappropriate solution methods. Due to the scale and number of variants in BUSCO’s
BFSP, there was no way to say with certainty that the optimal solution to the problem
could been found and therefore it was classified as NP-hard. As a result exact methods
were not applicable so are not discussed further.

On a side, not proving or disproving that P=NP is one of the seven millennial problems
and carries a prize of one million dollars (Claymathn, 2017). In essence, what P=NP
implies is that if it is easy to validate a solution to the problem then it is easy to create
the solution. Most people believe that P is not equal to NP but if it can be proven
it will simplify many of the worlds optimisation problems and take away the skill that is
generally required to provide answers to complicated problems. Aaronson (2006) explained
the implications of P=NP as: “There would be no fundamental gap between solving a
problem and recognising the solution once it is found, everyone who could appreciate a
symphony would be Mozart, everyone who could follow a step by step argument would be
Gauss”.

2.4.2 Metaheuristics vs Classical Heuristics

Metaheuristics are a higher level methodology that allows for a broad range of problems
to be solved whilst heuristics are often developed to solve a specific problem. Both are
appropriate when the nature of the problem to be solved requires approximation methods.
According to Braekers et al. (2016), metaheuristics can cater for none optimal local se-
lections in the development of the solution whereas classical heuristics always make local
optimal selections. This results in metaheuristics being able to explore more possible solu-
tions which normally lead to a better solution than that of a classical heuristic. This better
solution is at the expense of the algorithm’s run time. The difference in run time between
metaheuristics and classical heuristics is attributed to the fact that for the vast majority of
cases, metaheuristics are iterative meaning they create and manipulate multiple solutions
until a stop criterion is met, whereas classical heuristics are constructive resulting in the
construction of a single solution. Without some form of greedy logic whereby local optimal
selections are made at each step in the construction, classical heuristics tend to be limited
in their use.

Another attribute of metaheuristics that needed to be considered was whether the
resulting algorithm used deterministic or stochastic methods. A deterministic algorithm
will always output the same solution if its inputs are the same, whereas a stochastic
algorithm will incorporate randomness into the process so the output will not always be
the same. The benefits of adopting a stochastic approach for the Duty Master Model are
demonstrated by reference to Kontoravdis and Bard (1995)’s GRASP metaheuristic.

13

2.4.3 GRASP Metaheuristic

The paper by Kontoravdis and Bard (1995), “A GRASP for the Vehicle Routing Problem
with Time Windows”, develops a GRASP and proves that it is effective at providing good
solutions to the VRPTW and multiple objectives. In their paper, a brief description of
the VRPTW is presented and then described with graph theory.

Kontoravdis and Bard (1995) present a VRPTW that is different to the classical one, as
it has two objectives instead of just one. The primary objective is to minimise the required
number of vehicles to make all the deliveries or pickups and the secondary objective is to
minimise the total distance travelled. Their version of the problem is more applicable to
many real world problems than classical VRPTW and specifically mentions bus scheduling,
rendering it particularly insightful for BUSCO’s BFSP. The authors developed a GRASP
metaheuristic because it produced good solutions quicker than other metaheuristics.

The GRASP metaheuristic combines a greedy heuristic with randomisation. In the
development of the solution, the cost of adding a revenue route to each of the available
vehicles is calculated and stored as cost data. A standard greedy heuristic will look at
the cost data and allocate the route to the vehicle with the lowest associated cost. This
results in a deterministic output. In comparison, a random heuristic will look at the data
and randomly select an available vehicle from the list and in doing so will rarely select
the vehicle with the lowest associated cost. This results in the output being stochastic
instead of deterministic. The stochastic nature allows for the construction of the solution
to be iterated over a set period, or until a criterion is met. Once the iteration has stopped,
the best solution of the process is selected. This adds the metaheuristic component. The
method allows for a greater number of solutions to be explored but is very inefficient for
large problems. The GRASP metaheuristic is the amalgamation of these two methods.
The GRASP metaheuristic looks at the cost data and then randomly selects from only
the best options. Kontoravdis and Bard (1995) found that selecting from the top three
options produced the best results. The logic of the GRASP metaheuristics is shown in
Algorithm 2

Algorithm 2: GRASP for VRP

Input : Customers CCC,Iteration Limit tmax.
Output: Solution SSS∗

t← 0;
BestCostBestCostBestCost← V eryBigNumber;

while t ≤ tmax do
for customer in CCC do

find three closest vehicles to customer;
randomly allocate customer to one of these three vehicles;

SSS ← compile solution;
CostCostCost← evaluate cost of solution;

if CostCostCost ≤ BestCostBestCostBestCost then
BestCostBestCostBestCost← CostCostCost;
SSS∗ ← SSS;

t← t + 1;

return SSS∗

The approach by Kontoravdis and Bard (1995) demonstrates that it is very important

14

to order the customers before they are inputted into the algorithm as the order can have
a large effect on the performance of algorithms that incorporate greedy logic. Algorithms
based off greedy logic are prone to deteriorating solution quality as options to choose from
get exhausted. As a result it is important to input the customers in a logical manner
to try and mitigate this effect. Kontoravdis and Bard (1995) mention that ordering the
customers by their distance from the depot, or in ascending order of their time window
constraints, produces good results. Applying the GRASP to the BFSP problem, the
customers represent the revenue routes that need to be optimally allocated to the fleet’s
busses.

The fact that the at the core of a GRASP is a greedy heuristic that identifies the
top few allocation options presents a unique opportunity. If the algorithm developer stops
before including the iterative functionality and function that randomly selects from the top
allocation options and instead adds functionality to only select the best option, the result
will be a greedy algorithm instead of a GRASP. Greedy algorithms are classical heuristics
and a GRASP is a metaheuristic. The unique opportunity is that the frame work of a
GRASP makes it relatively easy to convert a classical heuristic into a metaheuristic and
vice versa.

2.5 Fourier-E’s Genetic Algorithm

Fourier-E initially tried to manipulate a JSPRIT package to solve the routing problem.
JSPRIT is an open source package that has been designed by top computer scientists
to solve VRP problems (JSPRIT, 2017). The software package allows for the code to
be manipulated. This method was aborted by Fourer-E as it was too time consuming.
JSPRIT is written in Java which is a common language but relatively hard to follow by
Fourier-E’s engineers. Fourier-E’s engineers have been using Python over Java and since
VRP problems are so well documented, they decided to build the algorithm from scratch.
In addition to this, developing a Python based solution mitigates the risk of employees
that are involved in the project leaving as there are six engineers at Fourier that are skilled
with Python. They chose the Genetic Algorithm (GA) as the metaheuristic to develop
the Duty Master. The GA is a nature inspired, iterative, population-based and stochastic
metaheuristics (Talbi, 2009). As discussed previously, although their model achieves the
objective of reducing bus numbers and kilometres driven to execute the BUSCO fleet
schedule, a serious limitation of their Genetic Algorithm (GA) is that it takes about 20
minutes to generate a solution..

2.6 Conclusion

The importance of modeling and the framework for classifying models according to their
intended use that was proposed by Pidd (2010) has been presented. The model to be
developed for this project has been identified as a model to Provide Insights as it is
intended to enable the client to manipulate certain parameters of their operating proce-
dures in order to demonstrate potential improvements which could be made to their their
Duty Master.

The role of exact methods, metaheuristics and classical heuristics in problem solving
has been discussed. Referring to the work of Talbi (2009), the research problem was
classified as a fair sized NP-hard problem, which ruled out exact methods and suggested
that metaheuristics or heuristics were the most appropriate method for addressing the
research problem.

15

It was identified that with a few adaptations BPP logic can be used to achieve the
primary objective of reducing the number of busses needed to complete all revenue routes.

The various stages of the development of a GRASP metaheuristic where examined
and it was identified that the partial development results in a greedy algorithm which
is a classical heuristic, so has the advantage of a fast run time. Whereas the complete
development of GRASP metaheuristic has the advantage of a better solution. Fourier-
E has used the Genetic Algorithm to solve the BUSCO fleet scheduling problem, which
works well in terms of reducing costs but takes a long time to run.

Drawing on the information presented in this literature review, three options for algo-
rithm development for the research problem became apparent. The first was to partially
develop a GRASP to the point where it is a classical heuristic. The second was to fully
develop the GRASP metaheuristic. The third was to follow Fourier-E and use the Genetic
Algorithm. All of these options will include aspects of bin packing logic in order to reduce
the busses. These options are considered in the next chapter.

16

Chapter 3

Development of the Duty Master
Model

The objective of the model to be developed was to provide BUSCO with an online tool
that would demonstrate the effect of making changes to various aspects of their operating
procedures. Additionally, it was intended that the model would also illustrate that Fourier-
E can generate much quicker solutions and a greater variety of solutions than the client
could generate in-house. The more frequently clients make changes to their operating
procedures, the more opportunities there are for Fourier-E to sell an updated Duty Master.
In order to achieve this, an algorithm that generates a Duty Master in less than ten seconds
and provides a solution that is at least 80% as good as Fourier-E’s existing GA needed to
be developed and incorporated into a user interface.

3.1 Defining the Problem Mathematically

The model’s parameters that are available for client manipulation were defined as: bus
speed, revenue routes, allocation to the day and night depots, and a loading and a distance
buffer. The model constraints are the client’s existing depot capacities and the feasibility of
their route sequencing. The model outputs are the optimised number of buses, positioning
distances, depot allocations and fleet utilisations throughout the day, which demonstrate
the effective savings that could result from implementation of the Duty Master generated
by the model.

The Duty Master model developed for this research project is an amalgamation of the
algorithm and the user interface.

In order to define the research problem mathematically, the following needs to be
stated:

• Let the cost of owning a bus be represented by CCC1.

• Let the cost of fuel and maintenance per kilometre be represented by CCC2.

• Let x be the number of available busses in the fleet.

• Let each available bus be represented by k where k ∈ {1, 2, 3, . . . , x} .

• Let the total distance that each bus travels to get into position and to execute its
revenue routes be represented by Pk.

17

Then with the decision variable x, the objective function can be modelled as:

min z = xCCC1 +CCC2

x∑
k=1

PPP k. (3.1)

In order to calculate Pk the operations that each bus undertakes needs to be explained.
Every day of the week each bus does the following:

1. Travel from its overnight depot to its first revenue route.

2. Execute its first revenue route.

3. Get into position then execute its next revenue route.

4. Repeat step three until all its morning revenue routes have been executed.

5. Travel from the end location of the last morning revenue route to its day depot.

6. Travel from its day depot to its first afternoon revenue route.

7. Execute the first afternoon revenue route.

8. Get into position then execute its next revenue route.

9. Repeat step eight until all its afternoon revenue routes have been executed.

10. Travel from the end location of its last revenue route to the same overnight depot
that it started at.

The smaller the value of Pk the better is the value of the objective function so the goal
is to execute all the above steps in as few kilometres as possible without violating any of
the constraints. In order to mathematically express the calculation of Pk we need to state
the following:

• Let Rk,i be the notation for the ith revenue route that is assigned to bus k. For
example R2,4 is the route that is assigned to the second bus and it is the 4th revenue
route that the bus will execute in its tour.

• Let DDD(i, j) be the distance between location i and location j. i and j are the start
and end locations of all revenue routes, and the available depots.

• Let LMk be the index of the last morning revenue route that was assigned to bus k.

• Let LAk be the index of the last afternoon revenue route that was assigned to bus
k.

• Let the set of depots be represented by d such that d ∈ {1, 2, 3, 4, 5, 6, 7}. There are
seven depots available for busses to be allocated to.

• Let DF d,k be the day depot d (intermediate facility) that was assigned to bus k.

• Let NF d,k be the night depot d that was assigned to bus k.

18

With the above defined the calculation of PPP k is as shown in the equation below:

Pk = DDD(NF d,k, Rk,1) +

(
LMk−1∑
i=1

DDD(Rk,i, Rk,i+1)

)
+DDD(Rk,LMk

, DF d,k)

+DDD(DF d,k, Rk,LM+1) +

 LAk−1∑
i=LMk+1

DDD(Rk,i, Rk,i+1)

+DDD(Rk,LMk
, NF d,k)

(3.2)

The calculation of Pk is subject to depot capacity and revenue route start time constraints.
If we let CapNd and CapDd be the capacities of all the night and day depots respect-

fully, then the depot capacity constraints can be modelled as:

x∑
k=1

NFd,k ≤ CapNd ∀ d ∈ {1, 2, . . . , 7} (3.3)

x∑
k=1

DFd,k ≤ CapDd ∀ d ∈ {1, 2, . . . , 7} (3.4)

To account for the revenue route start time constraint, a revenue route can only be added
to a bus if it is possible for the bus to move from its current location to the start location
of the revenue route before the start time of that revenue route. If we let ST k,i be the
start time of revenue route Rk,i, ETk,i be the end time of revenue route Rk,i, SLk,i be the
start location of revenue route Rk,i, ELk,i be the end location of a revenue route Rk,i, S
be the speed the buss can travel, DB be the distance buffer and LB be the loading buffer,
then the constraint can be modelled as:

ETk,i−1+DB×
D(ELk,i−1, SLk,i)

S
+LB≤ STk,i ∀ Rk,i ; k ∈ {1, 2, 3, . . . , x}, i ∈ {2, . . . , LAk}

(3.5)

The challenge in providing a solution to the internal problem is selecting the sequence
of routes that each bus must operate and the depots that each bus must visit. These two
things must be manipulated to create a solution that minimises the amount of busses and
kilometres without violating the constraints. It must achieve this in a time of less than
ten seconds so it can be useful as a model to demonstrate the impact of modifications to
the fleet schedule.

3.2 Algorithm

The algorithm is the brains of the model and needs to be able to rapidly provide a good
solution to the bus fleet scheduling problem.

3.2.1 Selecting the algorithm

The literature review and problem investigation provided insight on the methods available
and which aspects of performance should be prioritised. Fourier-E had used the GA
which works well but takes a long time to run. The investigation into modelling and the
requirements of BUSCO and Fourier-E made it apparent that the algorithm needed to run
fast so that it could be incorporated into the model. To cater for this speed, Fourier-E

19

allowed for a 20% reduction in solution quality. Being guided by Talbi (2009), the research
problem was classified as a fair sized NP-hard problem, which ruled out exact methods and
suggested that metaheuristics or classical heuristics were the most appropriate method.
It was also identified that in general, greedy algorithms are easier to develop and generate
solutions faster than iterative algorithms, but do not produce as good a solution.

Kontoravdis and Bard (1995)’s GRASP was developed to solve a very similar prob-
lem to the BUSCO bus scheduling one. The GRASP metaheuristics uses a combination
of greedy logic and randomization. GRASP metaheuristics are iterative but the greedy
component makes them a lot quicker than traditional iterative metaheuristics. A GRASP
metaheuristics is merely an extension to a greedy algorithm that allows for randomisa-
tion. This information left three options to consider. The first was to partially develop
a GRASP to the point where it is a greedy algorithm (classical heuristic). The second
was to fully develop the GRASP metaheuristic. The third was to follow Fourier-E and
use the Genetic Algorithm. The advantage of using the GA would be that it should pro-
duce very similar results to Fourier-E’a current algorithm. In addition, it would be easy
for Fourier-E’s employees to manipulate the algorithm in the future, as they are already
familiar with the GA. The problem with using the GA is that it is an iterative algorithm
so can take a long time to run and is stochastic, so the output varies from run to run
which is not ideal. Kontoravdis and Bard (1995) provide good documentation on how
to use GRASP, which made it very tempting to use. They suggest that this method is
faster than most metaheuristics but it is still iterative and stochastic so its run speed and
output are subject to uncertainty. The advantage of using a greedy algorithm is that the
literature suggests they are easier to develop and run faster than iterative methods. The
disadvantage is that the quality of solution is not as good. Since Fourier-E allowed for
a relaxation of solution quality and the model requirements indicated that the run speed
of the algorithm is paramount, a greedy algorithm was chosen. The greedy algorithm is
the partial development of Kontoravdis and Bard (1995)’s GRASP with a few adaption’s.
A further advantage of using a greedy algorithm is that it is deterministic. Deterministic
models instil user trust as the output is consistent. It was decided that if the greedy al-
gorithm produced a solution in a time that was a lot faster than the 10 second constraint
it would be converted into a GRASP.

The greedy components of the algorithm were broken up into functionality that min-
imises the number of vehicles and functionality to minimise distance. Minimising vehicles
follows bin packing logic and minimising distance follows vehicle routing logic. A few algo-
rithms were explored in the literature review that solve BBP. The one that was best suited
for adaption for this project was the “Best Fit Decreasing” algorithm; however, there were
two adaptions that needed to be made. The first was that instead of the routes being ar-
ranged in decreasing order, as per Kontoravdis and Bard (1995)s suggestion, they were
arranged in increasing order of start time. The second was that rather than allocating the
object to the bin that would be most full after the allocation, the revenue route (object)
was allocated to the bus (bin) that added the least distance to the system. The algorithm
that was developed as part of this project and which achieves these adaptations, has been
named the “Greedy Bin” algorithm. Later in this report the Greedy Bin algorithm will
be validated.

3.2.2 Algorithm logic

The logic of greedy algorithms is to make local optimal choices at every selection point.
There are two important criteria when making each selection. The first is: can the revenue
route be added to an existing bus instead of adding it to a new empty bus (in other words,

20

to minimise busses). The second is: if the revenue route can be added onto many different
busses, then the revenue route must be added onto the closest bus (to minimise distance).
The algorithm developed is constructive so it starts from scratch and then sequentially
adds revenue routes onto busses until there are no unassigned revenue routes. The way the
algorithm is coded makes it impossible to squeeze a revenue route in-between two other
routes, they have to be stacked on top of each other. In order to minimise revenue routes
blocking other revenue routes, the revenue routes needed to be ordered in ascending order
of start time.

In addition to adding revenue routes to buses, an overnight and rest depot had to
be added to each bus. The logic of this also follows greedy logic where the buses were
assigned to the closest overnight and rest depots. Due to capacity constraints it was not
always possible to send all the busses to the closest depot. In these cases they were sent
to the second depot, but if that depot was full, they were then sent to the third depot and
so on. Converting this logic into a functioning greedy algorithm was the main technical
challenge of the project. The Python language was used to program the algorithm and
the script can be found in Appendix A.1. The pseudo code of the algorithm is depicted in
Algorithm 3 and the pseudo code of the function to identify the closest bus is presented
in Algorithm 4.

Algorithm 3: The Greedy Bin Algorithm

Input : Routes RRR, Distance Matrix DMDMDM , Depot Capacities CCC, Triger TTT , Bus
Speed BSBSBS

Output: Solution SSS , Data DDD

for route in RRR do

if route[Id] = TTT then

for bus in busObjects do
send to closest available day depot;

find closest viable bus;

if no bus found then
create bus object;
allocate route to bus;
find and allocate closest available overnight depot;

else
allocate route to closest bus;

for bus in busObjects do
send to overnight depot;
extract tour data;

return SSS,DDD

21

Algorithm 4: Find Closest Viable Bus

Input : Route Start Time STSTST , Route Start Location SLSLSL,Distance Matrix DMDMDM ,
busObjects BOBOBO, Loading Time LLL

Output: Positioning Distance DDD , Closest Bus CBCBCB

Avalible← False;
bestDistance← 100000;
b← 0;

for bus in BOBOBO do
timeAvalible ← bus.Avalible;
busLocation ← bus.Location;
calculate distance between SLSLSL and busLocation ;
calculate traveTime;

if distance ≤ bestDistance and timeAvalible+ traveT ime+LLL ≤ STSTST then
CBCBCB ← b;
bestDistance← distance;
Avalible← True;

b← b + 1;

DDD ← bestDistance;

if Avalible = False then
create bus object;
CBCBCB ← b;
DDD ← 0;

return DDD,CBCBCB

A key input to the Greedy Bin algorithm is the distance matrix. Fourier-E provided
a distance matrix that was generated from Google Maps. The format of this matrix is
three columns with the first column being the start location, the second being the end
location and the third being the road distance between the two locations. The original
function that extracted the distance between locations worked through the logic seen in
Algorithm 5. This method is not very efficient and resulted in the algorithm taking two
minutes to execute which is too long. In order to solve this problem an alternative method
was developed and resulted in the algorithm running in just over one second which is a huge
improvement. To achieve this two additional programs were developed. The first program
converted the original distance matrix into an NxN matrix, see Appendix A.2. The second
program replaced the start and end locations in the route data with the corresponding
indices of those locations in the distance matrix, see Appendix A.3. This allowed the
distance to be extracted through a reference to a specific location in the distance matrix
instead of looping through it, which is far more efficient.

22

Algorithm 5: Distance Calculator

Input : Start Location SSS, End Location EEE, Distance Matrix DMDMDM
Output: Distance DDD

for i in DDD do

if i[0] = SSS and i[1] = EEE then
DDD ← i[2];
break from loop;

return ,DDD

The basic principle that governs greedy algorithms is to make the best decision every
time. On face value this logic seems ideal and in many cases it works very well, but it
is prone to a problem of deteriorating selection quality as the options to choose from get
exhausted. It was hoped that the effect of this tendency would not be too detrimental,
but it is important to acknowledge that it could be an issue and the results of testing for
it are documented later in this report.

3.2.3 Comparison and validation

The results of the algorithm and how it performed against the as-is criterion, Fourier-
Es criteria and the pass criteria can be seen in Table 3.1. The results were attained
with a bus speed of 40km/h, loading time of 15 min and a distance buffer of 10%. The
algorithm exceeded all the pass criteria and performed particularly well in run speed. Pass
criteria for busses and kilometres saved were set at 80% of those generated by Fourier-E’s
existing algorithm. The project’s algorithm performed at 88% of Fourier-E’s with regards
to busses saved and 96.7% for kilometres saved. The run speed of the algorithm is 975.6
times faster than Fourier-E’s. The exceptional performance in run speed makes the model
user-friendly.

Table 3.1: Algorithm Results Comparison

Busses Kilometres Run Speed

as-is 430 20173 na
Fourier-E 413 17988 20 min
Pass Criteria ≤ 417 ≤ 18425 ≤ 10sec
Greedy Bin Algorithm 415 18147 1.23 sec

In order to validate that the algorithm was performing as it should, a visual represen-
tation of the Duty Master was developed and the tours of 19 busses were analysed. The
visual representation of the Duty Master is presented in Figure 3.1. This visual represen-
tation was particularly useful in debugging the algorithm as it made identifying errors in
logic or code a lot easier.

23

Figure 3.1: Visual representation of the Duty Master

Each bar contains the details of the time and sequence of a buses activities. Green
bars represent revenue routes and by looking at the graph from left to right it is clear
that the revenue routes have been ordered in ascending order of start time. The blue
bars represent the positioning routes and it is these routes that the algorithm focuses on
reducing distance as the revenue routes are fixed. The red bars represent the bus being
idle. Before any revenue route can be executed there needs to be an idle period of at least
15 minutes to allow for the loading of customers.

The 19 busses were analysed to test that no constrains had been violated whilst the
busses were executing their tours and that the algorithm was correctly calculating the
positioning and transporting distances. This process involved manually testing a sample
of busses and determining whether it was possible for the sequence of routes in the tour
to be executed without violating any constraints and by adding up all the positioning and
transporting distances, to check if they equalled the values that the algorithm provided.
This process took a long time so it was impractical to test the tour of every bus. In the
development stage of the algorithm some errors were detected through this method of
validation. The final algorithm did not produce any errors. The algorithm was developed
with an object orientated style of programming so it was easy to extract the required
information. The tours that were analysed are recorded in Table 3.2.

Since the algorithm greatly exceeded all the pass criteria, there was no need to develop
it further. However, the literature review revealed that a limitation of greedy algorithms
is that they are prone to deteriorating selection quality as options get exhausted. To
test if this tendency had materialized and if so, to what extent, a graphing function was
developed that plotted the position distance that was required for each revenue route. The
routes were plotted in the same order that the algorithm allocated them. The function
can be found in Appendix A.4 and the output is presented in Figure 3.2

24

Table 3.2: Tour Analysis

Bus Night Depot Day Depot Route Sequence Positing Transporting

1 Fordville Pritsker [’1’, ’413’, ’Pritsker’, ’544’] 93.5 182.5
10 Fordville Goldratt [’10’, ’461’, ’Goldratt’, ’490’] 40.7 112.8
25 Fordville Ohno [’25’, ’Ohno’, ’499’] 45.1 132.8
50 Fordville Ohno [’52’, ’Ohno’, ’536’, ’563’] 47.3 124.9
75 Fordville Ohno [’77’, ’Ohno’, ’556’] 36.3 107.5
100 Fordville Ohno [’104’, ’Ohno’, ’596’] 33.0 85.3
125 Fordville Goldratt [’129’, ’Goldratt’, ’572’] 27.5 96.6
150 Fordville Goldratt [’155’, ’Goldratt’, ’595’] 46.2 75.2
175 Fordville Ohno [’181’, ’Ohno’, ’680’] 46.2 117.5
200 Fordville Goldratt [’209’, ’Goldratt’, ’636’] 44.0 103.7
225 Fordville Ohno [’237’, ’Ohno’, ’746’] 30.8 119.4
250 Fordville Ohno [’262’, ’Ohno’, ’772’] 39.6 110.8
275 Fordville Goldratt [’289’, ’Goldratt’, ’717’] 38.5 107.0
300 Fordville Ohno [’314’, ’Ohno’, ’824’] 44.0 132.0
325 Fordville Goldratt [’341’, ’Goldratt’, ’791’, ’899’, ’969’] 47.3 100.2
350 Fordville Ohno [’366’, ’Ohno’, ’911’] 36.3 97.9
375 Nance Fordville [’395’, ’Fordville’, ’487’] 58.3 53.1
400 Nance Goldratt [’429’, ’Goldratt’, ’854’] 63.8 114.1
415 Nance Goldratt [’460’, ’Goldratt’, ’878’] 51.7 87.2

Figure 3.2: Transition Distances

Figure 3.2 clearly illustrates that the algorithm did experience a deterioration in se-
lection quality as selection options got exhausted. There are two shifts (morning and
afternoon) when revenue routes are executed with a large time gap between them. This
gap resulted in the greedy algorithm being able to select from all the busses at the start
of each shift; however, as time progressed into each shift, some busses became unavailable
which resulted in fewer selection opportunities. The last third of revenue routes in each
shift required roughly twice as many position kilometres as the first two thirds of routes.
These results suggest that there is an opportunity to reduce the positioning kilometres
through the application of an iterative heuristic that should reduce the total kilometres

25

and balance the positioning kilometres more evenly. Due to the exceptional performance
in run speed, there was leeway to develop an iterative heuristic to test if this effect could
be mitigated. To achieve this a GRASP was developed.

3.2.4 GRASP

Since the Greedy Bin algorithm was performing well within the run time specification
and the literature suggested that given enough time iterative heuristics perform better
than constructive heuristics, it was worth investigating if a GRASP metaheuristic could
perform better than it. In order for the GRASP metaheuristic to be favoured it needed
to perform notably better than the Greedy Bin to compensate for the inconvenience of
a stochastic output and a ten second run time as specified by the upper limit of the
algorithm’s run-time.

Since the Greedy Bin algorithm was constructed using logic that is very similar to that
of the GRASP developed by Kontoravdis and Bard (1995), it was quite simple to convert
the algorithm. In order to make the conversion three things needed to be done:

• Randomise the assignment procedure of routes to busses. Kontoravdis and Bard
(1995) suggest that the randomised assignment should select from the three best
options and not all of the options. This creates a stochastic output which makes
iteration useful.

• Add functionality to iterate over the construction of the solution.

• Add a function to save the solutions of each iteration and identify the best solution.

The output of any stochastic algorithm needs to be statistically tested as the solution
varies and the degree to which it varies is important. In order to test if the GRASP
metaheuristic could be a better choice for the bus fleet scheduling model, it was configured
to run 500 times for ten seconds. The script that facilitated this experiment can be seen
in Appendix A.5 and the results of the distances generated are seen in Figure 3.3. There
was no need to display results for the number of busses employed because 99 times out of
500, 415 busses were used and the other time 414 busses were required.

Figure 3.3: Distances of each Iteration

26

The statistics of this experiment for distance were:

• mean: 18112 km/d

• standard deviation: 24 km/d

• best: 17991 km/d

• worst: 18240 km/d

Compared with the Greedy Bin that required 415 busses and 18147 km/d, this experiment
proved that it is possible to produce better solutions, however the gain is not sufficient to
justify replacing the Greedy Bin. The mean of the GRASP is only 35 kilometres better
and there is only one instance in the 500 iterations where one bus was saved .

For interest’s sake, the GRASP metaheuristic was set to run overnight to test how well
it could perform without the strict time constraint. With the relaxed time constraint the
GRASP performed similarly to Fourier-E’s GA. The results are depicted in Table 3.3.

Table 3.3: Final Algorithm Results Comparison

Busses Kilometres

as-is 430 20173
Fourier-E 413 17988
GRASP 414 17933
Greedy Bin Algorithm 415 18147

3.3 User Interface

It is impractical to provide the client with a model that they can only run using its
source code because it is quite likely that the client will not have programming experience.
Fourier-E specified that they wanted an online interface to interact with the algorithm.
The benefit of this is that BUSCO will be able to access and use the model no matter
where they are. An additional benefit is that it fits in with Fourier-E’s phase two plan of
opening the model up to future clients as potential clients will be able to find the model
through a Google search.

In order to create a website there are three programming languages that form the
basic tool kit. These languages are Hypertext Markup Language (HTML), Cascading
Style Sheet (CSS) and JavaScript. In order to develop skills in these three programming
languages, two websites: w3schools (2017) and stack over flow (2017), were regularly
consulted. A literature review on web development was considered unnecessary as there
are no complicated web development requirements of this project. Prior to discussing
the functionality of the user interface, a very basic description of the three programming
languages is presented.

HTML is the language that lays the scaffolding for websites. This language provides
the browser with images, paragraphs and all the other bits of information that is seen
on the client’s browser. CSS tells the browser how the information provided by HTML
should be displayed. It controls things like colour, size and positioning. JavaScript is the
language that allows for more complicated functionality to be executed after a page has
loaded. For example if you click on a button and the result is that the size of the text
increases, this is a JavaScript instruction to the browser.

27

3.3.1 Interface inputs

The ability to allow the client to manipulate the inputs to the model is the functionality
that should inspire the client to make changes. There are five inputs that can be changed
and are explained below. The user interface developed for this project works in three
steps:

1. Input values for five variables.

2. Click the solve button.

3. Display the results.

To access the user interface, please copy and paste: http://mcgladdery.pythonanywhere.
com/Simulation/ into your browser and then enter the username and password which are
both “BPJ”. The code for this page can be found in Appendix B.2

The five variables that the user interface allow the client to manipulate are:

1. The speed the bus can travel. This is used to convert the distance between
locations into a travel time. This is crucial in evaluating if a bus can get in position
to execute a route.

2. The loading buffer (minutes). It takes time for people to get on and off a bus
so this needs to be accounted for. The loading buffer can also be used to make
allowance for uncontrollable delays.

3. The distance buffer (multiplying factor). This is another mechanism to add
allowances for delays. The difference between the distance buffer and the loading
buffer is that the distance buffer scales with distance whilst the loading buffer is a
fixed time.

4. The capacities of night and day depots. This allows for the effect of changing
depot capacities to be evaluated.

5. The routes to be executed. This allows for the effect of adding new routes to be
evaluated before they are implemented. This will be particularly beneficial to the
client when tendering for new routes.

With the exception of the fifth variable, the other four varibles are adjusted on the
main page of the simulation. The first three variables are manipulated through a select
box and the capacities are changed via a number input. The inputs screen can be seen in
Figure 3.4

28

http://mcgladdery.pythonanywhere.com/Simulation/
http://mcgladdery.pythonanywhere.com/Simulation/

Figure 3.4: Model Input Screen

The functionality that allows users to add routes is a key component of the model.
Every year new revenue routes become available so BUSCO needs to be able to add these
routes into the model to determine how they will affect their operating system. The goal
is for BUSCO to appreciate that the model can incorporate the new revenue routes better
than they can calculate in-house.

To add this functionality, a new page was added to the website called “Routes”. There
are three inputs that need to be filled in to add a new route: the start time, start location
and end location. After these inputs have been included the user submits this information
which is then transferred to a script that inserts this new route into the file that contains
all the routes. This script can be seen in Appendix A.6. After the information has been
captured the page reloads and the new route can be seen in the list of routes. Figures 3.5

29

and 3.6 illustrate the process of adding a new hypothetical route from Alberton North to
Bara that starts at 4:15 am.

Figure 3.5: Add Route

Figure 3.6: Added Route

By referring to the table in Figure 3.5 and comparing it with the table in Figure 3.6,
the new route that has been added can be seen.

Many bus companies bid for the available revenue routes, so it is unlikely that BUSCO
will acquire all of them. For this reason it is important to allow BUSCO to test multiple
combinations of new routes. To facilitate this, it is important that it is easy to revert
back to the current set of routes, so that the impact of adding new combinations can be
compared in isolation. To enable this, a reset button and script have been added to the
website.

3.3.2 Interface outputs

The main outputs of interest are the number of busses used and the total kilometres
driven. Together, these are the main cost drivers of the bus fleet. Two other outputs
are the utilisation of the bus fleet throughout the day and the utilisation of the depots.
The outputs are discussed in detail in the Results chapter. Figure 3.7 illustrates how the
results of the simulations are presented.

30

Figure 3.7: Model Output Screen

3.4 Connecting the User Interface and Algorithm

Flask is a Python web framework that facilitates the correct rendering of pages and execu-
tion of algorithms. There are a couple of alternative frameworks like web2py and dejango
but there is very little difference between them. The reason Flask was chosen is that it is
the most lightweight of the frameworks so is easy to get up and running. At the core of a
Flask web application is a script that by convention is named “flask app.py”. This script
is the link between the user’s browser and the server side scripts that are broken up into:
Templates, Libraries and Functions. The “flask app.py” receives information from the
client via a standard Hypertext Transfer Protocol (HTTP) or Asynchronous JavaScript
And XML (AJAX) request. This script can be found in Appendix B.1. Figure 3.8 shows
a flow diagram of the information transfer.

31

Figure 3.8: Model Flow Diagram

The templates are the scripts that contain the HTML, CSS and JavaScript and are sent
to the user’s browser. This information can be seen on any website by right clicking and
then selecting: “View page source”. The Libraries contain advanced bits of functionality
that the Python programming community has made available for everyone to use. The
functions contain all the advanced functionality that has personally been developed. This
is where the project’s algorithm is stored.

AJAX is a method that allows for information to be passed to and from the server
and client without the need to reload the page. The importance of this functionality is
that it is data efficient and allows the client to see an actual page whilst processing is
happening in the background. The algorithm takes about 3 seconds to execute and return
the data. If the alternative method was used of reloading a page via standard HTTP, the
client would be looking at a white screen for a long enough period of time to think that
an error might have occurred. With a bad internet connection the time taken could be
even longer.

The process of how information is transferred and handled when running the BUSCO
model is explained in 8 steps:

1. The client navigates to the page on the website called: Simulation. This sends a
message to the server which the “flask app.py” script then handles.

2. The “flask app.py” script identifies that the user is not logged in, so it sends the
login template back to the client.

3. The client then enters the login details and sends them back.

4. The “flask app.py” script evaluates the login details and if they are valid it will find
the Simulation template and send it back to the client.

5. The client then enters the variables into the model that is now being displayed on
their browser.

6. The client then presses the Solve button which sends an AJAX request with the
inputted parameters to run the simulation.

7. The “flask app.py” script interprets this information and knows to load some li-
braries, run the algorithm and send the results back.

32

8. When the results are received, a JavaScript function displays the results and creates
a graph showing how the busses have been utilised throughout the day.

3.5 Conclusion

An algorithm has been developed that is capable of solving the MDVRPPDTWIF. This
algorithm has been named the: “Greedy Bin” as a result of its logic being based off
greedy methods that have previously been used to solve vehicle routing and bin packing
problems. The Greedy Bin algorithm exceeded all Fourier-E’s specifications and performs
particularly well in run speed, which is 1.23 seconds, or 975.6 times faster than Fourier-
E’s existing algorithm. The Greedy Bin algorithm performs at 88% of Fourier-E’s with
regards to busses saved and 96.7% for kilometres saved and has been validated in three
ways.

An easy to use online interface has been developed with multiple web development
languages. The Greedy Bin algorithm was connected to this user interface and in doing
so completed the Duty Master Model. There are five variables that can be manipulated
by the client, namely: bus speed, loading buffer, distance buffer and day and night depot
capacities, and revenue routes. The model outputs are: number of busses needed to
complete all revenue routes, positioning distance, depot allocations and fleet utilisation
throughout the day.

The model has been validated and is functional and ready to use as a tool to facilitate
optimisation of bus fleet scheduling.

33

Chapter 4

Results and Discussion

Having established the efficiency of the algorithm, the next phase of this project was to
use the model as a tool to quantify the effect of making changes to the depot capacities,
adding new routes and manipulating other fleet parameters.

4.1 Current Allocation vs Recommended

Table 4.1 is a comparison of the number of busses that BUSCO currently allocates to the
day depots against the number of busses that the project’s model recommends should be
allocated to each day depot. The main difference between the two is that BUSCO allocates

Table 4.1: Current Allocation vs Recommended

Day Depot Current Recommended

Fordville 26 5
Gallego 10 0
Goldratt 164 170
Ohno 184 192
Pritsker 28 28
Taylor 8 8
Tregoning 10 12

a lot more busses to the Fordville and Gallego depots, whilst the model allocates more
busses to Goldratt and Ohno. A limitation of this comparison is that BUSCO needs 430
busses to allocate all the routes whereas the Greedy Bin algorithm reduces the number of
busses to 415. Whilst acknowledging this limitation, a soft estimate of the potential gain in
efficiency achieved by allocating the busses according to the model’s recommendation can
be calculated through a simulation. By constraining the capacities of the day depots to
that of BUSCO’s current allocation, the Greedy Bin algorithm is forced to send roughly
the same amount of busses as BUSCO to each day depot. When the simulation was
run under these capacity constraints it demonstrated that BUSCO’s less than optimal
allocation is adding an extra 472 kilometres per day onto the total positioning distance.
If we assume that there are four weeks in a month and the daily routes are repeated five
times a week, then an additional 9440 km are driven every month. BUSCO assigns a fuel
and maintenance cost of R13 per kilometre so the total cost of the current allocation can
be estimated as R122 720 per month more than it would be if the model’s output was
implemented.

34

The exact simulation can be run on the night depots. Currently BUSCO allocate 300
busses to Fordville and 130 busses to Gallego. When the experiment was run for the night
depots, an additional 747 kilometres were added, which amounts to a wastage of R194
220 per month. These simulations suggest that changing the capacity and location of the
depots is a big cost driver.

4.2 Simulations with Changing Day Depot Capacities

The as-is configuration uses a bus speed of 40 km/h, distance buffer of 1.1, loading buffer
of 15 minutes and sets the day depots capacities to those provided by BUSCO. The
simulation in this section used the as-is configuration for everything except depot capacity,
which represents the simulation variable. The current capacities of the day depots and the
number of busses that the algorithm recommends should use them is shown in the screen
shot of the algorithm’s output (Figure 4.1). In computing the simulation, the algorithm
was able to allocate all 984 revenue routes to 415 busses that drove 18147 km.

Figure 4.1: Recommended Day Depot Allocation

When comparing recommended utilisation versus capacity of the day depots, it became
apparent that there were a number of inefficiencies in BUSCO’s current Duty Master.
These are discussed in the next sections of the report.

4.2.1 Depot underutilization

Fordville is severally underutilized during the day. It has a capacity for 350 busses but
only 5 busses are currently allocated to it. Fordville has the largest capacity because it
is also being used as one of the two overnight depots. It is currently kept open 24/7
but it might serve BUSCO better by closing it during the day. The salaries and operating
expenses of running Fordville during the day are not available, but the model allows for the
expense of closing Fordville depot during the day to be calculated. By setting the capacity
of Fordville to zero during the day, the model outputs that 415 busses are required and
18206 kilometres driven. This is 59 kilometres more per day than the as-is scenario, which
amounts to an extra 1180 kilometres driven per month. With a fuel and maintenance cost
of R13 per kilometre, closing Fordville during the day would add an expense of R15 340
per month. The cost of running Fordville has not been provided by BUSCO, but it is
likely to be more than R15 340 per month as many staff are employed. If this is the case,
then BUSCO should consider closing the Fordville depot during the day. Similarly, the
model recommends that no busses should be sent during the day to the Gallego depot,
which is the other overnight depot, so this is another opportunity for the client to reduce
expenditure by cutting the day staff crew.

35

Tregoning is the last depot that has a discrepancy between its capacity (40) and the
amount of vehicles assigned to it (12) by the project’s model. This suggests that Tregoning
might not be well located for functioning as a day depot. To evaluate this assumption, the
capacity of the Tregoning depot was set to zero and the output of the model evaluated.
The effect of rerouting the 12 busses that are currently assigned to it is substantial. Closing
Tregoning as a day depot adds an additional 624 kilometres per day which amounts to
R162 240 additional expenditure every month. It seems very unlikely that the cost of
operating the depot will exceed R162 240 per month, so despite being utilised at only
33.3% of its capacity, it should not be closed.

4.2.2 The potential for increasing depot capacity

The model indicates that Goldratt, Ohno, Pritsker and Taylor depots are all utilized to
capacity. This suggests that these depots are in favourable positions and that by increasing
their capacity a saving in distance driven could result. To evaluate this, the capacity of
all four depots was individually increased to the ideal capacity. The ideal capacity is
established by setting the capacity of the depot to a very large number which essentially
eliminates the constraints. The number of busses that the algorithm allocates to the
depots is considered the ideal capacity for each depot. The results of these simulations
and the monthly financial implications of changing the day depot capacities are shown in
Table 4.2. The monthly financial implications are calculated by multiplying the increase
or decrease in kilometres driven every month by R13.

Table 4.2: Capacity Increase Simulation

Depot Current Ideal Effect on Rand

Goldratt 170 173 (7280)
Ohno 192 192 0
Pritsker 28 31 4160
Taylor 8 12 8320

From the above table it is apparent that it would be beneficial to increase the current
capacity of the Pritsker or Taylor depot. It is unexpected that there is a negative effect
on cost when relaxing the capacity constraint of Goldratt. This is an effect of the greedy
logic where the best selection is made at the present moment without regard for what the
effects will be later on. There would have been a benefit to send an extra three busses to
Goldratt at the end of the morning shift, but these three busses would have had to travel
further to get into position for their afternoon routes. Running the simulation for Ohno
suggested that the current capacity is also the ideal capacity for that depot.

One final simulation was run where all the day depot capacities were relaxed at once.
The model recommended that the capacities of Goldratt and Pritsker be increased by
three and that Taylor be increased by four. This resulted in a saving of 82 kilometres per
day, which amounts to R21 320 per month.

4.3 Simulations with Changing Overnight Depot Capacities

Goldratt and Ohno depots are currently just being used as day depots but since they
already have a large capacity and are favoured over Fordville and Gallego as day depots,
it was hypothesised that converting these two depots to overnight depots could reduce the

36

total kilometres driven. To cater for this, Goldratt and Ohno were added onto the model
as overnight depots. When the model was run with these depots included it was surprising
that at nighttime, the two depots were not at all favoured like they were during the day.
The model’s output are depicted in the figure below.

Figure 4.2: Recommended Overnight Depot Utilisation

In total, only four busses were assigned to the Goldratt and Ohno depots and there
was no saving in kilometres, so it does not make sense to convert these two depots into
overnight depots. The reason for this result has not been investigated but it is suspected
that it is a consequence of Goldratt and Ohno being located in the city centre and Fordville
and Gallego being located in the urban periphery. The general commuting pattern of bus
passengers is to travel from the outskirts of the city into its centre in the morning and then
back again in the afternoon. If Goldratt and Ohno are used as overnight depots, then the
busses will have to travel all the way to and from the city centre to the periphery each day
just to get into position, whereas having the busses overnight at Fordville and Gallego,
means they are positioned close to the start and end of the daily commuting route.

Fordville’s depot is being utilised to capacity in the evening. This suggests that com-
pared to Gallego it is in a more favourable position. When the capacities of the day depots
were relaxed the model only made minor changes to the suggested capacities. However,
this was not the case with the overnight depots. The model assigned 410 busses to Fordville
and only five to Gallego. As it seems hard to justify keeping a depot open overnight for
only five busses, a second simulation was run with the capacity of Gallego set to zero. By
allocating all the busses to Fordville, a saving of 879 kilometres every day resulted, which
amounts to R228 540 per month. This is a significant saving. The cost of increasing the
capacity of Fordville to cater for an additional 65 busses can now be evaluated against its
associated saving. It might not be possible to increase the capacity of Fordville, but this
simulation clearly indicates that there could be substantial financial gains in doing so.

4.4 Simulations with Adding Routes

Fourier-E provided four routes to be used to test the effect of adding new revenue routes.
The route details are depicted in Table 4.3. Adding these routes to the model resulted
in an additional 72 kilometres per day being driven and the addition of one bus. This
information is valuable as it will enable BUSCO to compare the additional revenue versus
the expected costs of adding the new routes. An additional output of the model is a bar
chart of the bus fleet’s utilization throughout the day. This chart can be seen in Figure
4.3 and is used to identify which periods of the day are underutilized and which period is
the constraint. This information is useful in predicting if new routes can be added without
adding extra busses. It is clear that the middle of the morning period (6:00 to 6:30) is
the most busy with a fleet utilization of 90%. One of the four test routes is in this period
of the day so it was worth checking the effect of excluding that route but incorporating
the other three. The result of adding the three routes was an additional 144 kilometres

37

Table 4.3: Capacity Increase Simulation

Start Time From To Distance (km)

04:15 Angus Emdeni 35
06:25 Waterfall Rivonia 9
15:30 Sandton Esso 14
18:00 Kyalami Kosmosdal 18

driven but no extra busses were required. It may come as a surprise that adding three
routes resulted in more kilometres than adding four routes. The reason for this is that
the additional bus that was required when adding four routes provided the Greedy Bin
algorithm with more options to allocate routes to busses. If the revenue that each route
generates was provided, then the financial impact of adding the routes would be easy to
calculate and in doing so would empower Fourier-E to make an informed decision. In the
test case, the extra revenue from the 4th route would have to exceed the extra expense
of operating an additional bus. If the extra revenue does not exceed the expense then
BUSCO should only tender for the three routes and not the one that is in the constrained
mid-morning period.

Figure 4.3: Bus Utilisation Throughout the Day

4.5 Simulation for Potential Performance and Implementa-
tion

Discussions between Fourier-E and BUSCO have indicated that there is opposition from
the unions with regards to the practicality of implementing the proposed Duty Master that
is based on Fourier-E’s original algorithm. The unions are skeptical that it is possible to
execute all 984 routes with just 413 busses instead of the 430 busses currently in operation
(refer to Table 3.1). Since a primary function of the unions is to protect the drivers from
job loss, they understandably are not supportive of a Duty Master that requires 17 less
busses. In order to convince the unions that an extreme approach has not been taken, the
new model that has been developed for this project can be used to demonstrate the effect
that adding buffers and changing the speed of the busses will have.

4.5.1 Increasing bus speed

The first simulation illustrates the effect of increasing the bus speed from 40 km/h to 50
km/h while maintaining a 15 minute loading buffer. These parameters do not allow for
many delays but are not unrealistic. This configuration results in 396 busses being used and
18215 kilometres travelled. This simulation can provide BUSCO with some negotiating
power as it is evident that there is a feasible solution that is considerably better in terms

38

of buses required (396 instead of 413) than the current one being proposed.

4.5.2 Manipulating buffer parameters

By manipulating the loading and distance buffers, the model can be used to demonstrate
to BUSCO the effects of those changes on the Duty Master in terms of total distance
travelled and number of busses required to implement those changes. Table 4.4 shows the
effect of changing the loading buffer while maintaining the bus speed at 40 km/h and the
distance buffer set to 1. Table 4.5 shows the effect of changing the distance buffer while
maintaining the bus speed at 40 km/h and setting the loading buffer to zero.

Table 4.4: Varying Loading Buffer

Loading Buffer Busses Kilometres

0 400 18034
5 406 18047
10 408 18198
15 412 18156
20 415 18150
25 422 18183
30 427 18180

Table 4.5: Varying Distance Buffer

Distance Buffer Busses Kilometres

1 400 18034
1.05 401 18008
1.1 405 17957
1.15 405 17984
1.2 406 17976
1.3 409 18006

On an impractical note, all routes can be allocated to 252 busses if there are no buffers
and the busses maintain an average speed of 100km/h.

The algorithm and associated model that have been developed provide a rapid and
easy to use tool for demonstrating how the manipulation of various components of a bus
fleet schedule can result in greater efficiencies and in doing so lead to significant savings
in operating expenditure.

39

Chapter 5

Conclusion

Prior to commencing this project, Fourier-E, an industrial engineering consultancy com-
pany, had developed an algorithm to optimise BUSCO’s Duty Master. A limitation of
their algorithm was its slow computational time of approximately 20 minutes. Through
studying the work of Kontoravdis and Bard (1995) and Talbi (2009), an algorithm was
developed that exceeded all Fourier-E’s specifications and performed particularly well in
run speed, which at 1.23 seconds, is 975.6 times faster than Fourier-E’s algorithm. This
algorithm was named the “Greedy Bin” as its logic is based on greedy methods to solve
vehicle routing and bin packing problems. The algorithm performed at 88% of Fourier-E’s
with regards to busses saved and 96.7% for kilometres saved.

The next requirement was to covert the algorithm into a model by developing an
online user interface that incorporated the algorithm. Through using a variety of web
development programming languages the online interface was created. The Python based
Flask framework allowed for the Greedy Bin algorithm to be incorporated into the model.

The model allows the client, BUSCO, to see the benefits of making changes to their
operations which can then be used to generate a new Duty Master which can be compared
with their existing fleet schedule. Five variables that can be manipulated by the client
were added to the user-interface, namely: bus speed, loading buffer, distance buffer ,
revenue routes and day and night depot capacities. The model outputs are: the number
of busses needed to complete all revenue routes, positioning distance, depot allocations
and fleet utilization throughout the day. The model is easy to use and rapidly generates
it’s output.

The model has been used to identify short falls and opportunities in BUSCO’s current
operations. The most apparent short fall is that the overnight depot Gallego is in a very
poor location. The manipulation of the overnight depot capacities revealed that by closing
down Gallego and increasing the capacity of Fordville, a saving of R228 540 per month in
fuel and maintenance, plus the cost associated with running Gallego, could be made. This
potential saving warrants an investigation into the practicality of increasing the capacity
of Fordville and/or identifying a new location for a second overnight depot.

At a more general level, manipulation of the model using various what-if scenarios has
demonstrated its ability to save costs through the identification of more efficient depot
allocations, changing the capacity of existing favourably located depots, and through en-
hancing scheduling performance by increasing bus speeds and reducing buffer times. In
the highly competitive world of tendering, the model enables clients to determine the costs
and benefits of new revenue routes prior to deciding whether or not to bid for them.

This project identified potential savings in terms of busses needed or kilometres re-
duced and also demonstrated the financial implications of changing depot allocations and

40

capaities.
A suggestion for future research is to add another variant of the VRP, namely the

Heterogeneous Fleet. The busses in the Sowetan operations have the same capacity but
this is not the case in some of the other regions that have normal busses and bi-articulated
busses. When there are multiple types of vehicles in the fleet the problem is considered to
be a Heterogeneous Fleet Vehicle Routing Problem (HVRP). Incorporating this variant
will add a lot of complexity but expand the area to which the model can be applied.

The successful development of the “Greedy Bin” algorithm as a method to solve the
Mulit-Depot Vehicle Routing Problem with Pickup and Delivery, Time Windows and
Intermediate Facilities (MDVRPPDTWIF) and the programming of its associated user
interface, has created an easy to use online tool that can speedily generate a Duty Master.
As such, this project has demonstrated the potential of the model to rapidly facilitate the
optimisation of the scheduling of a large bus fleet.

To test the model please visit the website: http://mcgladdery.pythonanywhere.

com/Simulation/. The password and username for both is: “BPJ”.

41

http://mcgladdery.pythonanywhere.com/Simulation/
http://mcgladdery.pythonanywhere.com/Simulation/

Bibliography

Aaronson, S. (2006). Scott Aaronson Blog, Available at https://jsprit.github.io/. [Online;
accessed 04-September-2017 at https://jsprit.github.io/].

Box, G. E., Draper, N. R., et al. (1987). Empirical model-building and response surfaces,
volume 424. Wiley New York.

Braekers, K., Ramaekers, K., and Van Nieuwenhuyse, I. (2016). The vehicle routing
problem: State of the art classification and review. Computers & Industrial Engineering,
99:300–313.

BUSCO (2017). BUSCO Alias for the bus company. Alias for the bus company [Online;
accessed 04-September-2017 at http://anonymous.co.za/].

Claymathn (2017). Claymathn. [Online; accessed 04-September-2017 at http://www.

claymath.org/millennium-problems/rules-millennium-prizes].

JSPRIT (2017). jsprit is a java based, open source toolkit for solving rich traveling salesman
(TSP) and vehicle routing problems (VRP). [Online; accessed 04-September-2017 at
https://jsprit.github.io/].

Kontoravdis, G. and Bard, J. F. (1995). A grasp for the vehicle routing problem with time
windows. ORSA journal on Computing, 7(1):10–23.

Manson, N. (2006). Is operations research really research? ORiON: The Journal of
ORSSA, 22(2):155–180.

Martello, S. and Toth, P. (1990). Knapsack problems: algorithms and computer implemen-
tations. Wiley-Interscience series in discrete mathematics and optimization. J. Wiley &
Sons.

Pidd, M. (2010). Why modelling and model use matter. Journal of the Operational
Research Society, 61(1):14–24.

stack over flow (2017). stackoverflow worlds largest developer community. [Online; accessed
04-September-2017 at https://www.stackoverflows.com/].

Talbi, E.-G. (2009). Metaheuristics: from design to implementation, volume 74. John
Wiley & Sons.

w3schools (2017). W3Schools worlds largest developer site. [Online; accessed 04-
September-2017 at https://www.w3schools.com/].

42

https://jsprit.github.io/
http://anonymous.co.za/
http://www.claymath.org/millennium-problems/rules-millennium-prizes
http://www.claymath.org/millennium-problems/rules-millennium-prizes
https://jsprit.github.io/
https://www.stackoverflows.com/
https://www.w3schools.com/

Appendix A

Python

A.1 Algorithm

””” This a lgoruthm uses a d i s t a n c e matr ix ”””
import csv
import Analyt i c s

def Run(speed , c apa c i t i e s , nightCap ,LB,DB) :
global LoadingTime , buffer
LoadingTime = LB
buffer=DB
#−−−
#Globa l pa rami t e r s
global DobsNightCap , nameDay , locDay , busObjects , cntDay , capDay , cntDobsNight ,\
cntNanceNight , cntNight , capNight , speedLimit , d i s tanceMatr ix \
, t r a n s i t i o nD i s t an c e s
#−−−
#v a r i b l e s

sendToDayDepot = ’ 480 ’
DobsNightCap = 350
cntDobsNight = 0
cntNanceNight = 0

nameDay = [’Dobs ’ , ’ Nance ’ , ’Kya Sand ’ , ’ Linbro Park ’ , ’ Strydom Park ’ , ’ S t e e l d a l e ’ ,\
’ Selby ’]

locDay = [’ 33 ’ , ’ 80 ’ , ’ 65 ’ , ’ 69 ’ , ’ 108 ’ , ’ 105 ’ , ’ 98 ’]
capDay = [350 ,250 ,170 ,192 ,28 ,8 , 40]
cntDay = [0] ∗ len (capDay)
capNight = [0 , 0 , 0 , 0]
cntNight = [0] ∗ len (capNight)

#Data e x t r a c t i o n & s t o r a g e
Routes = []
busObjects = []
d i s tanceMatr ix = []
t r an s i t i o nD i s t an c e s = []
r ou t e c sv = open(’ Fr iday Index . csv ’ , ’ r ’)
r eader = csv . reader (r ou t e c sv)
cntRoutes = 0
for i in reader :

Routes . append (i)
cntRoutes +=1

rou t e c sv . c l o s e ()

matrix = open(’ newDistanceMatrix . csv ’ , ’ r ’)
r eader = csv . reader (matrix)
for i in reader :

d i s tanceMatr ix . append (i)
matrix . c l o s e ()

c a p a c i t i e s = [f loat (x) for x in c a p a c i t i e s]
nightCap = [f loat (x) for x in nightCap]

capDay = c ap a c i t i e s
capNight = nightCap

speedLimit = speed
#−−−

#−−−
#Algor i thm Main
for routeData in Routes :

i f routeData [0] == sendToDayDepot :
for b in busObjects :

b . Add Day Depot ()

43

bus ,pD=Closest Bus (routeData [1] , routeData [2])

i f busObjects [bus] . Routes == [] : #Add BaseDepot
pD=busObjects [bus] . Add AM Depot (routeData [2] , routeData [1])

busObjects [bus] . Add Route (routeData [0] , pD, f loat (routeData [4]) , routeData [1] \
, routeData [3])

#Data + Home t r i p
Pos i t i on ingDi s tance = 0
for bus in busObjects :

bus . Add PM Depot ()
Pos i t i on ingDi s tance = Pos i t i on ingDi s tance+bus . Pos i t i on ingDi s tance

data = Ana lyt i c s . U t i l i z a t i o n (busObjects)

return len (busObjects) , round(Pos i t i on ingDi s tance , 2) / buffer , cntRoutes , cntDay , cntNight , data
#−−
#Cla s s e s
class Bus () :

def i n i t (s e l f) :
s e l f . Routes =[]
s e l f . Tour = []
s e l f . Po s i t i on ingDi s tance = 0
s e l f . RouteDistance = 0
s e l f . a v a l i b l e = 0
s e l f . l o c=0
s e l f . BaseDepot = ’ ’
s e l f . StartTime = 0
s e l f . EndTime = 0

def Add Route (s e l f , routeId , pDistance , tDistance , startTime , endLoc) :
global LoadingTime
startTime = Normalized Time (startTime)
s e l f . Routes . append (route Id)
s e l f . Tour . append ([’p ’ , startTime−LoadingTime−60∗pDistance /(speedLimit ∗1 .0) ,\

startTime−LoadingTime])
s e l f . Tour . append ([’ t ’ , startTime , startTime+ 60∗ tDis tance /(speedLimit ∗ 1 . 0)])
s e l f . a v a l i b l e = startTime + 60∗ tDis tance /(speedLimit ∗1 .0)
s e l f . l o c= endLoc
s e l f . Pos i t i on ingDi s tance = s e l f . Po s i t i on ingDi s tance + pDistance
s e l f . RouteDistance += tDistance
t r an s i t i o nD i s t an c e s . append (round(pDistance , 2))

def Add AM Depot (s e l f , s tartLoc , startTime) :
startTime = Normalized Time (startTime)
nightOptions = []
n ightOpt ionsId = []
for i in range (4) :

i f cntNight [i] < capNight [i] :
d i s t = Distance (locDay [i] , s ta r tLoc)
nightOptions . append (d i s t)
n ightOpt ionsId . append (i)

ind = nightOptions . index (min(nightOptions))
be s tD i s t = nightOptions [ind]
ind2 = nightOptionsId [ind]
cntNight [ind2] +=1
s e l f . BaseDepot = nameDay [ind2]
s e l f . l o c = locDay [ind2]
s e l f . StartTime= startTime

return bes tDi s t

def Add Day Depot (s e l f) :
be s tD i s t = 1000
for i in range (len (capDay)) :

i f cntDay [i] < capDay [i] :
d i s t = Distance (s e l f . loc , locDay [i])
i f d i s t < bes tDi s t :

be s tD i s t = d i s t
index = i

s e l f . Routes . append (nameDay [index])
s e l f . Po s i t i on ingDi s tance = s e l f . Po s i t i on ingDi s tance + bes tDi s t
s e l f . l o c=locDay [index]
s e l f . RestDepot = nameDay [index]
cntDay [index] += 1

def Add PM Depot (s e l f) :
i f s e l f . BaseDepot == ’Dobs ’ :

d=Distance (s e l f . loc , ’ 33 ’)
s e l f . Po s i t i on ingDi s tance = s e l f . Po s i t i on ingDi s tance + d
s e l f . l o c= ’ 33 ’
s e l f . EndTime = s e l f . a v a l i b l e + 60∗d/(speedLimit ∗1 .0)

e l i f s e l f . BaseDepot == ’Nance ’ :
d=Distance (s e l f . loc , ’ 80 ’)
s e l f . Po s i t i on ingDi s tance = s e l f . Po s i t i on ingDi s tance + d
s e l f . l o c= ’ 80 ’
s e l f . EndTime = s e l f . a v a l i b l e + 60∗d/(speedLimit ∗1 .0)

e l i f s e l f . BaseDepot == ’Kya Sand ’ :
d=Distance (s e l f . loc , ’ 65 ’)
s e l f . Po s i t i on ingDi s tance = s e l f . Po s i t i on ingDi s tance + d

44

s e l f . l o c= ’ 65 ’
s e l f . EndTime = s e l f . a v a l i b l e + 60∗d/(speedLimit ∗1 .0)

e l i f s e l f . BaseDepot == ’ Linbro Park ’ :
d=Distance (s e l f . loc , ’ 69 ’)
s e l f . Po s i t i on ingDi s tance = s e l f . Po s i t i on ingDi s tance + d
s e l f . l o c= ’ 69 ’
s e l f . EndTime = s e l f . a v a l i b l e + 60∗d/(speedLimit ∗1 .0)

#−−
#Funct ions
def Closest Bus (startTime , s ta r tLoc) :

Ava l ib l e = False
startTime = Normalized Time (startTime)
bus = 1000
t rave lD i s t anc e= 1000
cnt = 0
for i in busObjects :

d i s t ance= Distance (i . loc , s ta r tLoc)
pTime = 60∗ d i s tance /(speedLimit ∗1 .0)
i f d i s tance < t r ave lD i s t anc e and i . a v a l i b l e+pTime +LoadingTime\
<startTime :

Ava l ib l e = True
bus = cnt
t r ave lD i s t anc e = d i s tance

cnt +=1

i f Ava l ib l e == False :
busObjects . append (Bus ())
bus = cnt
t r ave lD i s t anc e = 0

return bus , t r ave lD i s t anc e

def Distance (loc1 , l o c2) :

d i s t ance= distanceMatr ix [int (l o c1)] [int (l o c2)]

return f loat (d i s t ance)∗buffer

def Normalized Time (time) :
time = time . s p l i t (” : ”)
normal ized t ime = int (time [0])∗60+ int (time [1])
return normal ized t ime

a , b , c , d , e=Run(40 , [3 50 , 250 , 170 , 192 , 28 , 8 , 40] , [3 50 , 250 , 170 , 192] , 1 5 , 1 . 1)
print (a , b , c , d , e)
#Ana l y t i c s . Tota l Work ing Hours (bu sOb j e c t s)
#Ana l y t i c s . Routes Dr iven Data (bu sOb j e c t s)
#Ana l y t i c s . P o s i t i o n i n g D i s t a n c e s (t r a n s i t i o nD i s t a n c e s)
#Ana l y t i c s . U t i l i z a t i o n (bu sOb j e c t s)

’ ’ ’ f o r i in [0 , 9 , 24 ,49 ,74 ,99 ,124 ,149 ,174 ,199 ,224 ,249 ,274 ,299 ,324 ,349 ,374 ,399 ,414] :
p r i n t (s t r (i +1) +’ & ’+ bu sOb j e c t s [i] . BaseDepot +’ & ’+ bu sOb j e c t s [i] . RestDepot\
+’ & ’+ s t r (bu sOb j e c t s [i] . Routes)+ ’ & ’+ s t r (round (bu sOb j e c t s [i] . Po s i t i on i n gD i s t anc e , 2))\
+’ & ’+ s t r (round (bu sOb j e c t s [i] . RouteDistance , 2)) + ”\\”) ’ ’ ’

A.2 Distance Matrix Formatter

import csv
#−−
#Ex t ra c t Old Dis tance Matr ix Data
oldDistanceMatr ix = []
matrix = open(’ DistanceMatrix . csv ’ , ’ r ’)
r eader = csv . reader (matrix)
for i in reader :

o ldDistanceMatr ix . append (i)
matrix . c l o s e ()

#−−
#Get a l l Loca t i ons
Locat ions = []
for i in oldDistanceMatr ix :

i f i [0] not in Locat ions :
Locat ions . append (i [0])

Locat ions . pop (0)
#−−
#Dis tance Finder
def Distance (loc1 , l o c2) :

found = False
for i in oldDistanceMatr ix :

i f i [0]== loc1 and i [1]== loc2 :
d i s t ance = i [2]
found = True
break

i f found ==False :
print (loc1 , l o c2)

return d i s tance

45

#−−
#Create New Matrix
newDistanceMatrix =[]
cnt =0
outputFi l e = open(’ newDistanceMatrix . csv ’ , ’w ’)
for i in Locat ions :

i f cnt ==0:
outputF i l e . wr i t e (’NULL, ’)
for k in Locat ions :

outputF i l e . wr i t e (k+’ , ’)
outputF i l e . wr i t e (’\n ’)

rowData=[]
cnt2=0
for j in Locat ions :

i f cnt2==0:
outputF i l e . wr i t e (i+’ , ’)

d= Distance (i , j)
rowData . append (d)
outputF i l e . wr i t e (d+’ , ’)
cnt2 +=1

newDistanceMatrix . append (rowData)
outputF i l e . wr i t e (’\n ’)
cnt+=1

print (newDistanceMatrix)
outputF i l e . c l o s e ()
#−−

A.3 Route Formatter

import csv
#−−
#Ex t ra c t Di s tance Matr ix Data
DistanceMatrix = []
matrix = open(’ newDistanceMatrix . csv ’ , ’ r ’)
r eader = csv . reader (matrix)
for i in reader :

DistanceMatrix . append (i [0])
matrix . c l o s e ()

#Ex t ra c t Routes
Routes =[]
r ou t e c sv = open(’ Friday Name . csv ’ , ’ r ’)
r eader = csv . reader (r ou t e c sv)
cntRoutes = 0
for i in reader :

Routes . append (i)
cntRoutes +=1

rou t e c sv . c l o s e ()

#−−
#Create Index Routes

cnt =0
outputFi l e = open(’ Fr iday Index . csv ’ , ’w ’)
for i in Routes :

indLoc = 0
for l o c in DistanceMatrix :

i f l o c == i [2] :
i ndStar t = indLoc

i f l o c == i [3] :
indEnd = indLoc

indLoc +=1

outputFi l e . wr i t e (i [0]+ ’ , ’+i [1]+ ’ , ’+str (indStar t)+ ’ , ’+str (indEnd)+ ’ , ’+i [4]+ ’\n ’)

cnt+=1

outputFi l e . c l o s e ()

A.4 Functions For Analysis

import matp lo t l ib . pyplot as p l t ; p l t . r c d e f a u l t s ()
import numpy as np
import matp lo t l ib . pyplot as p l t
#Tota l Hours Bar
def Total Working Hours (busObjects) :

performance = [0]∗49
hoursData = []
ob j e c t s = [x for x in np . arange (1 , 1 7 , 0 . 3 3)]
print (len (performance) , len (ob j e c t s))
for bus in busObjects :

hours = (bus . EndTime − bus . StartTime)/60 .0
hoursData . append (hours)
hours = str (hours)
hours = hours . s p l i t (’ . ’)
indPerformance= int (hours [0]) ∗ 3 −1
i f int (hours [1] [0]) < 3 . 3 :

indPerformance +=1

46

e l i f int (hours [1] [0]) < 6 . 6 :
indPerformance +=2

e l i f int (hours [1] [0]) < 9 . 9 9 :
indPerformance +=3

performance [indPerformance] +=1

’ ’ ’ t u p l e (o b j e c t s)
y po s = np . arange (l en (o b j e c t s))
p l t . bar (y pos , performance , a l i g n =’ c en t e r ’ , a l pha =0.5)
p l t . x t i c k s (y pos , o b j e c t s)
p l t . y l a b e l (’ Number o f Busses ’)
p l t . t i t l e (’ Spread o f bus u t i l i s a t i o n by hours worked ’)

p l t . show () ’ ’ ’
x=len (hoursData)
hoursData=sorted (hoursData)
#pr i n t (hoursData)
y pos = np . arange (x)
p l t . bar (y pos , hoursData , alpha =0.5)
p l t . x t i c k s (y pos , ob j e c t s)
p l t . y l ab e l (’ Hours ’)
p l t . t i t l e (’ Spread o f bus u t i l i s a t i o n by hours worked ’)

p l t . show ()

#−−
#Tota l Hours Dr i v ing
def Tota l Dr iv ing Hours (busObjects) :

performance = [0]∗24
ob j e c t s = [x for x in np . arange (1 , 1 3 , 0 . 5)]
print (len (performance) , len (ob j e c t s))
for bus in busObjects :

hours = (bus . Pos i t i on ingDi s tance + bus . RouteDistance)/60 .0
indPerformance= int (hours −0.5)∗2
i f hours %1 < .5:

indPerformance +=1
performance [indPerformance] +=1

tuple (ob j e c t s)
y pos = np . arange (len (ob j e c t s))
p l t . bar (y pos , performance , alpha =0.5)
p l t . x t i c k s (y pos , ob j e c t s)
p l t . y l ab e l (’Number o f Busses ’)
p l t . t i t l e (’ Spread o f bus u t i l i s a t i o n by hours dr iven ’)

p l t . show ()

#−−
#Routes d r i v en Data
def Routes Driven Data (busObjects) :

routeBins =[0]∗15
ob j e c t s = [x for x in np . arange (1 , 1 6 , 1)]
avg = 0
for bus in busObjects :

indBin= len (bus . Routes)−2
routeBins [indBin]+=1
avg+= indBin +1

avg =round(avg/ len (busObjects) , 2)
print (avg)
tuple (ob j e c t s)
y pos = np . arange (len (ob j e c t s))
p l t . bar (y pos , routeBins , alpha =0.5)
p l t . x t i c k s (y pos , ob j e c t s)
p l t . y l ab e l (’Number o f Routes ’)
p l t . t i t l e (’ Spread o f number o f route s per bus ’)

p l t . show ()

#−−
#Po s i t i o n i n g Di s t ance s
def Pos i t i on i ng D i s t anc e s (t r an s i t i o nD i s t an c e s) :

ob j e c t s = [x for x in np . arange (1 , len (t r an s i t i o nD i s t an c e s)+1 ,1)]
y pos = np . arange (len (t r an s i t i o nD i s t an c e s))
p l t . bar (y pos , t r an s i t i onD i s t anc e s , alpha =0.5)
p l t . x t i c k s (y pos , ob j e c t s)
p l t . y l ab e l (’ Distance ’)
p l t . x l ab e l (’ Routes ’)
p l t . t i t l e (’ Trans i t i on Distances f o r each Route ’)

p l t . show ()

#−−
#Bus U t i l i z a t i o n
def Ut i l i z a t i o n (busObjects) :

Pos i t i on ingDi s tance = 0
graph Pos i t i on ing = [0]∗48
graph Transport ing = [0]∗48
for bus in busObjects :

bus . Add PM Depot ()
Pos i t i on ingDi s tance = Pos i t i on ingDi s tance+bus . Pos i t i on ingDi s tance
for data in bus . Tour :

for i in range (1 , 4 9) :
divWholeLow= round ((data [1] / (30)) −0 . 5 , 0)
divWholeHigh= round ((data [2] / (30)) −0 . 5 , 0)

47

remLow= round(data [1]%30 ,1)
remHigh=round(data [2]%30 ,1)

i f divWholeLow < i and divWholeHigh > i :
i f data [0] == ’p ’ :

g raph Pos i t i on ing [i] += 30
else :

graph Transport ing [i] +=30
e l i f divWholeLow == i and divWholeHigh >= i :

i f data [0] == ’p ’ :
g raph Pos i t i on ing [i] += 30−remLow

else :
graph Transport ing [i] +=30−remLow

e l i f divWholeLow < i and divWholeHigh == i :
i f data [0] == ’p ’ :

g raph Pos i t i on ing [i] += remHigh
else :

graph Transport ing [i] +=remHigh

e l i f divWholeLow == i and divWholeHigh == i :
i f data [0] == ’p ’ :

g raph Pos i t i on ing [i] += remHigh−remLow
else :

graph Transport ing [i] +=remHigh−remLow

graph Pos i t i on ing = [round(x , 2) for x in graph Pos i t i on ing]
graph Transport ing = [round(x , 2) for x in graph Transport ing]
graph Data =[]
totTime = 30∗ len (busObjects)
for i in range (len (graph Transport ing)) :

graph Data . append ([30∗ i , round ((graph Transport ing [i] / totTime)∗100 ,2) ,\
round ((g raph Pos i t i on ing [i] / totTime)∗100 , 2)])

return graph Data

A.5 GRASP Controler

import GRASP
import time
import matp lo t l ib . pyplot as p l t
import numpy as np

busses= []
Distance =[]
for i in range (1 0 0) :

print (i)
best = 1000
bes tDis tance = 10000000
endTime = time . time () + 10
while time . time () < endTime :

a , b , c , d , e=GRASP.Run(40 , [350 , 250 , 270 , 292 , 228 , 28 , 240] , [3 50 , 250 , 0 , 0])
i f a < best or (a == best and b < bestDis tance) :

best = a
bestDis tance = b

busses . append (best)
Distance . append (round(bestDistance , 0))

print (np . average (Distance))
print (np .max(Distance))
print (np .min(Distance))
print (np . std (Distance))
x=len (Distance)
y pos = np . arange (x)
axes = p l t . gca ()
axes . s e t y l im ([17850 , 18250])
p l t . bar (y pos , Distance , alpha =0.5)
p l t . y l ab e l (’ Distance ’)
p l t . t i t l e (’ Best Distance o f each I t e r a t i o n ’)

p l t . show ()

print (np . average (busses))
print (np .max(busses))
print (np .min(busses))
print (np . std (busses))

A.6 Edit Routes

import csv
#−−
#Ex t ra c t Di s tance Matr ix Data
def Add or Remove Routes (startTime , startLoc , endLoc) :

startTimeOG= startTime
startTime= Normalized Time (startTime)
DistanceMatrixNames = []
DistanceMatrix = []
matrix = open(’ newDistanceMatrix . csv ’ , ’ r ’)

48

reader = csv . reader (matrix)
for i in reader :

DistanceMatrix . append (i)
DistanceMatrixNames . append (i [0])

matrix . c l o s e ()

#Ex t ra c t and add/ remove Routes
Routes =[]
r ou t e c sv = open(’ Fr iday Index . csv ’ , ’ r ’)
r eader = csv . reader (r ou t e c sv)
cntRoutes = 0
a l l o c a t e d = False
l a s t S t a r t = 0
for i in reader :

nTime = Normalized Time (i [1])
i f a l l o c a t ed == False and startTime <=nTime and startTime >= l a s t S t a r t :

Routes . append ([cntRoutes , startTimeOG , startLoc , endLoc])
cntRoutes +=1
a l l o c a t ed = True

Routes . append ([cntRoutes , i [1] , i [2] , i [3] , i [4]])
cntRoutes +=1
l a s t S t a r t = Normalized Time (i [1])

r ou t e c sv . c l o s e ()

#−−
#Create new Routes c sv
cnt =0
outputFi l e = open(’ Fr iday Index . csv ’ , ’w ’)
for i in Routes :

i f len (i) ==4:
indLoc = 0
for l o c in DistanceMatrixNames :

i f l o c == i [2] :
i ndStar t = indLoc

i f l o c == i [3] :
indEnd = indLoc

indLoc +=1
d=DistanceMatrix [indEnd] [indStar t]
outputF i l e . wr i t e (str (i [0])+ ’ , ’+i [1]+ ’ , ’+str (indStar t)+ ’ , ’+str (indEnd)+ ’ , ’+str (d)+ ’\n ’)

else :
outputF i l e . wr i t e (str (i [0])+ ’ , ’+i [1]+ ’ , ’+i [2]+ ’ , ’+i [3]+ ’ , ’+i [4]+ ’\n ’)

cnt+=1

outputFi l e . c l o s e ()

def Reset () :
r ou t e c sv = open(’ Friday Index OG . csv ’ , ’ r ’)
r eader = csv . reader (r ou t e c sv)
Routes = []
for i in reader :

Routes . append (i)
r ou t e c sv . c l o s e ()

outputF i l e = open(’ Fr iday Index . csv ’ , ’w ’)
for i in Routes :

outputF i l e . wr i t e (i [0]+ ’ , ’+i [1]+ ’ , ’+i [2]+ ’ , ’+i [3]+ ’ , ’+i [4]+ ’\n ’)

outputF i l e . c l o s e ()

def Normalized Time (time) :
time = time . s p l i t (” : ”)
normal ized t ime = int (time [0])∗60+ int (time [1])
return normal ized t ime

#Add or Remove Routes (’ 0 4 : 1 5 : 0 0 ’ , ’ A l b e r t on North ’ , ’ Braamfontein ’)
#Reset ()

49

Appendix B

Website

B.1 Flask Main

from f l a s k import Flask , render template , r eques t
import j son
import Addapted Bes t F i t Inc reas ing Alg as G

app = Flask (name)
app . c on f i g [”DEBUG”] = True

@app . route (”/” , methods=[”GET” , ”POST”])
def index () :

return render template (” index . html”)

@app . route (”/ Simulat ion /” , methods=[”GET” , ”POST”])
def Sim () :

return render template (” Simulat ion . html”)

@app . route (”/ signUp/” , methods=[”GET” , ”POST”])
def signUp () :

return render template (” signUp . html”)

@app . route (’ / signUpUser ’ , methods=[’POST ’])
def signUpUser () :

user = reques t . form [’ username ’] ;
password = reques t . form [’ password ’] ;
return j son . dumps({ ’ s t a tu s ’ : ’OK’ , ’ user ’ : user , ’ pass ’ : password }) ;

@app . route (’ /Run ’ , methods=[’POST ’])
def Run () :

speed = int (r eques t . form [’ speed ’])
DayCapacit ies = [r eques t . form [’ r1 ’] , r eques t . form [’ r2 ’] , r eques t . form [’ r3 ’] , r eques t . form [’ r4 ’] , r eques t . form [’ r5 ’] , r eques t . form [’ r6 ’] \
, r eques t . form [’ r7 ’]]
N ightCapac i t i e s = [r eques t . form [’ n1 ’] , r eques t . form [’ n2 ’] , r eques t . form [’ n3 ’] , r eques t . form [’ n4 ’]]
LB = f loat (r eques t . form [’LB ’])
DB = f loat (r eques t . form [’DB’])
bus , d i s tance , routes , dCapac it ies , nCap , data = G.Run(speed , DayCapacities , NightCapac i t ies ,LB,DB)
#data = [[0 , 0 . 0 , 0 . 0] , [3 0 , 0 . 0 , 0 . 0] , [6 0 , 0 . 0 , 0 . 0] , [9 0 , 0 . 0 , 0 . 0] , [120 , 0 . 0 , 0 . 0] , [150 , 0 . 0 , 0 . 0] , [180 , 0 . 0 , 0 . 0] , [210 , 0 . 0 , 0 . 5 1] , [240 , 2 . 74 , 5 . 0 4] , [270 , 5 . 32 , 1 7 . 0 2] , [300 , 35 .83 , 2 0 . 8 5] , [330 , 52 .07 , 1 8 . 8 9] , [360 , 66 .82 , 1 3 . 5 7] , [390 , 41 .14 , 9 . 2 7] , [420 , 21 .32 , 3 . 7 9] , [450 , 11 .49 , 0 . 6 8] , [480 , 3 . 64 , 0 . 1 6] , [510 , 0 . 19 , 0 . 0] , [540 , 0 . 0 , 0 . 0] , [570 , 0 . 0 , 0 . 0] , [600 , 0 . 0 , 0 . 0] , [630 , 0 . 0 , 0 . 0] , [660 , 0 . 0 , 0 . 0] , [690 , 0 . 0 , 0 . 0] , [720 , 0 . 0 , 0 . 1] , [750 , 0 . 0 , 0 . 7 3] , [780 , 0 . 49 , 1 . 2 8] , [810 , 0 . 42 , 2 . 3 7] , [840 , 3 . 27 , 4 . 0 3] , [870 , 3 . 86 , 7 . 3 6] , [900 , 11 .69 , 1 5 . 5 4] , [930 , 13 .01 , 3 1 . 7 5] , [960 , 39 .42 , 3 2 . 0] , [990 , 44 .05 , 2 6 . 6 7] , [1020 , 53 .5 , 1 6 . 2 6] , [1050 , 32 .8 , 1 2 . 8 1] , [1080 , 20 .67 , 3 . 9 3] , [1110 , 13 .98 , 1 . 9 1] , [1140 , 7 . 96 , 0 . 8 6] , [1170 , 1 . 75 , 0 . 1] , [1200 , 0 . 91 , 0 . 0] , [1230 , 0 . 0 , 0 . 0] , [1260 , 0 . 0 , 0 . 0] , [1290 , 0 . 0 , 0 . 0] , [1320 , 0 . 0 , 0 . 0] , [1350 , 0 . 0 , 0 . 0] , [1380 , 0 . 0 , 0 . 0] , [1410 , 0 . 0 , 0 . 0]]
#re tu rn j son . dumps ({ ’ s t a t u s ’ : ’OK ’ , ’ speed ’ : speed }) ;
return j son . dumps({ ’ s t a tu s ’ : ’OK’ , ’ speed ’ : speed , ’ Busses ’ : str (bus) , ’ Distance ’ : round(d i s tance , 2) , ’ Routes ’ : routes , ’ Capac i t i e s ’ : dCapac it ies , ’nCap ’ : nCap , ’Data ’ : data })

#re tu rn j son . dumps ({ ’ s t a t u s ’ : ’OK ’ , ’ D i s tance ’ : speed , ’ Capa c i t i e s ’ : DayCapac i t i e s })

B.2 Simulation User Interface

< !DOCTYPE html>
<html lang=”en”>
<head>

<t i t l e>BPJ</ t i t l e>
<meta charset=”utf−8”>
<meta name=”viewport ” content=”width=device−width , i n i t i a l −s c a l e=1”>
<l ink rel=” s t y l e s h e e t ” href=”http ://maxcdn . bootstrapcdn . com/ bootst rap /3 . 3 . 7 / c s s / bootst rap . min . c s s ”>
<l ink href=”http :// f on t s . goog l e ap i s . com/ c s s ? fami ly=Montserrat ” re l=” s t y l e s h e e t ” type=” text / c s s ”>
<l ink href=”http :// f on t s . goog l e ap i s . com/ c s s ? fami ly=Lato” re l=” s t y l e s h e e t ” type=” text / c s s ”>
<script src=”https :// ajax . goog l e ap i s . com/ ajax / l i b s / jquery /1 . 12 . 4/ jquery . min . j s ”></ script>
<script src=”http ://maxcdn . bootstrapcdn . com/ bootst rap /3 . 3 . 7 / j s / bootst rap . min . j s ”></ script>
< !−−<l ink rel=” shor tcut i con ” href=”Images/ f av i con . i c o ” type=”image/x−i con ”/ >−−>
<l ink rel=” shor tcut i con ” href=”{{ u r l f o r (’ s t a t i c ’ , f i l ename=’ f av i con . ico ’) }}”>
<l ink href=”https :// f on t s . goog l e ap i s . com/ icon ? fami ly=Mater ia l+Icons ” re l=” s t y l e s h e e t ”>
<l ink href=”{{ u r l f o r (’ s t a t i c ’ , f i l ename=’ S ty l e sh e e t . css ’) }}” re l=” s t y l e s h e e t ”>
<meta name=” de s c r i p t i o n ” content=”We s p e c i a l i z e in Bus Schedul ing and De l ive ry Optimizat ion . Unl ike most consu l t an t s we
dont ask f o r any upfront payment . Before you pay us a cent i t i s only f a i r that you t e s t our a b i l i t i e s . ”>
<meta name=”keywords” content=”Bus Schedul ing , schedul ing , De l ive ry Optimization , opt imizat ion , De l ive ry Optimisat ion
opt imisat ion ,VRPTW,VRPH”>

50

<script type=” text / j a v a s c r i p t ” src=”https ://www. g s t a t i c . com/ char t s / l oade r . j s ”></ script>
</head>
<body>
<nav class=”navbar navbar−de f au l t ”>

<div class=” conta ine r ”>
<div class=”navbar−header ”>

Bus F lee t Schedul ing
</div>
<ul class=”nav navbar−nav navbar−r i gh t ”>

< !−−< l i>Bus F l e e t S ch edu l i n g</ l i> −−>
< l i>Simulat ion Demo</ l i>

</div>

</nav>
<div class=” conta iner−f l u i d text−cente r bg−1”>

<h1> Simulat ion Conf igurat ion</h1>
</div>

<div class=” s e c t i on ”>
<div class=” conta ine r ”>

<div class=”row”>
<div class=” col−md−12”>

<p>This i s a demo o f Fourier−E’ s bus f l e e t s chedu l ing c a p a b i l i t i e s . After s i gn ing up we w i l l develop a model j u s t
l i k e the one below that w i l l a l low you to t e s t the e f f e c t that adding new routes , changing c a p a c i t i e s and r u l e s
w i l l have on your bus f l e e t s schedu le .
</p>

<form id = ’ form ’ class=”form−s i gn i n ” action=”/Run” method=”post ” r o l e=”form”>

<div class=”form−group”>
<label c lass=” contro l−l a b e l ”>Bus Speed</ label>
<select class=”form−con t r o l ” name = ”speed” id=”speed”>

<option>25</option>
<option>30</option>
<option>35</option>
<option>40</option>
<option>45</option>
<option>50</option>
<option>55</option>
<option>60</option>
<option>70</option>
<option>80</option>
<option>90</option>
<option>100</option>

</ select>
</div>

<div class=”form−group”>
<label c lass=” contro l−l a b e l ”>Distance Buf f e r (mul t ip ly ing f a c t o r)</ label>
<select class=”form−con t r o l ” name = ”DB” id=”DB”>

<option>1</option>
<option>1 .05</option>
<option>1 .1</option>
<option>1 .15</option>
<option>1 .2</option>
<option>1 .25</option>
<option>1 .3</option>
<option>1 .35</option>
<option>1 .4</option>
<option>1 .45</option>
<option>1 .5</option>

</ select>
</div>

<div class=”form−group”>
<label c lass=” contro l−l a b e l ”>Loading Buf f e r (minutes)</ label>
<select class=”form−con t r o l ” name = ”LB” id=”LB”>

<option>0</option>
<option>5</option>
<option>10</option>
<option>15</option>
<option>20</option>
<option>25</option>
<option>30</option>
<option>35</option>
<option>40</option>
<option>45</option>

</ select>
</div>

</div>
</div>

</div>
</div>
<div class=” s e c t i on ”>

<div class=” conta ine r ”>
<div class=”row”>

<div class=” col−md−12”>
<h3>Capac i t i e s f o r Rest Depots</h3>

</div>
</div>

</div>
</div>
<div class=” s e c t i on ”>

<div class=” conta ine r ”>
<div class=”row”>

51

<div class=” col−md−12”>
<table class=” tab l e ” id = ’Form’>

<thead>
<tr>

<th>Name</th>
<th>Current Capacity</th>
<th>Test Capacity</th>

</ tr>
</thead>
<tbody>

<tr>
<td>Dobs</td>
<td>350</td>
<td><input type=”number” class=”form−con t r o l ” name = ”r1 ” value = 350></td>

</ tr>
<tr>

<td>Nance f i e ld</td>
<td>250</td>
<td><input type=”number” class=”form−con t r o l ” name = ”r2 ” value = 250></td>

</ tr>
<tr>

<td>KyaSand</td>
<td>170</td>
<td><input type=”number” class=”form−con t r o l ” name = ”r3 ” value = 170></td>

</ tr>
<tr>

<td>Linbro Park</td>
<td>192</td>
<td><input type=”number” class=”form−con t r o l ” name = ”r4 ” value = 192></td>

</ tr>
<tr>

<td>Strydom Park</td>
<td>28</td>
<td><input type=”number” class=”form−con t r o l ” name = ”r5 ” value = 28></td>

</ tr>
<tr>

<td>S t e e l d a l e</td>
<td>8</td>
<td><input type=”number” class=”form−con t r o l ” name = ”r6 ” value = 8></td>

</ tr>
<tr>

<td>Selby</td>
<td>40</td>
<td><input type=”number” class=”form−con t r o l ” name = ”r7 ” value = 40></td>

</ tr>
</tbody>

</ table>
</div>

</div>
</div>

</div>

<div class=” s e c t i on ”>
<div class=” conta ine r ”>

<div class=”row”>
<div class=” col−md−12”>

<h3>Capac i t i e s f o r Overnight Depots</h3>
</div>

</div>
</div>

</div>
<div class=” s e c t i on ”>

<div class=” conta ine r ”>
<div class=”row”>

<div class=” col−md−12”>
<table class=” tab l e ”>

<thead>
<tr>

<th>Name</th>
<th>Current Capacity</th>
<th>Test Capacity</th>

</ tr>
</thead>
<tbody>

<tr>
<td>Dobs</td>
<td>350</td>
<td><input type=”number” class=”form−con t r o l ” name = ”n1” value = 350></td>

</ tr>
<tr>

<td>Nance f i e ld</td>
<td>250</td>
<td><input type=”number” class=”form−con t r o l ” name = ”n2” value = 250></td>

</ tr>
<tr>

<td>KyaSand</td>
<td>170</td>
<td><input type=”number” class=”form−con t r o l ” name = ”n3” value = 0></td>

</ tr>
<tr>

<td>Linbro Park</td>
<td>192</td>
<td><input type=”number” class=”form−con t r o l ” name = ”n4” value = 0></td>

</ tr>

52

</tbody>
</ table>

</div>
</div>

</div>
</div>

<div class=” s e c t i on ”>
<div class=” conta ine r ”>

<div class=”row”>
<div class=” col−md−12”>

<button class=”btn btn−primary btn−block ”> <h3>Run Simulat ion</h3></button>

</form>

</div>
</div>

</div>
</div>

<div class=” s e c t i on ”>
<div class=” conta ine r ” style=” d i sp l ay : none” id = ” re su l t sD iv ”>

<div class=”row”>
<div class=” col−md−12” >

<h2>Resu l t s</h2>
<p id = ”Resu l t s ”>
</p>

</div>
</div>
<div class=”row”>

<div class=” col−md−12” >
<div id=” cha r t d i v ”></div>

</div>
</div>
<div class=”row”>

<div class=” col−md−12”>
<h3>Day Depot U t i l i z a t i o n</h3>

<table class=” tab l e ” >
<thead>

<tr>
<th>Name</th>
<th>Current Capacity</th>
<th>Busses Using I t</th>

</ tr>
</thead>
<tbody>

<tr>
<td>Dobs</td>
<td>350</td>
<td><div id=”DC1”></div></td>

</ tr>
<tr>

<td>Nance f i e ld</td>
<td>250</td>
<td><div id=”DC2”></div></td>

</ tr>
<tr>

<td>KyaSand</td>
<td>170</td>
<td><div id=”DC3”></div></td>

</ tr>
<tr>

<td>Linbro Park</td>
<td>192</td>
<td><div id=”DC4”></div></td>

</ tr>
<tr>

<td>Strydom Park</td>
<td>28</td>
<td><div id=”DC5”></div></td>

</ tr>
<tr>

<td>S t e e l d a l e</td>
<td>8</td>
<td><div id=”DC6”></div></td>

</ tr>
<tr>

<td>Selby</td>
<td>40</td>
<td><div id=”DC7”></div></td>

</ tr>
</tbody>

</ table>
</div>

</div>
<div class=”row”>
<div class=” col−md−12”>

<h3>Overnight Depot U t i l i z a t i o n</h3>
<table class=” tab l e ”>

<thead>
<tr>

<th>Name</th>

53

<th>Current Capacity</th>
<th>Test Capacity</th>

</ tr>
</thead>
<tbody>

<tr>
<td>Dobs</td>
<td>350</td>
<td><div id=”NC1”></div></td>

</ tr>
<tr>

<td>Nance f i e ld</td>
<td>250</td>
<td><div id=”NC2”></div></td>

</ tr>
<tr>

<td>KyaSand</td>
<td>170</td>
<td><div id=”NC3”></div></td>

</ tr>
<tr>

<td>Linbro Park</td>
<td>192</td>
<td><div id=”NC4”></div></td>

</ tr>

</tbody>
</ table>

</div>
</div>

</div>
</div>

<div class=” s e c t i on ”>
<div class=” conta ine r ” style = ” d i sp l ay : none”>

<div class=”row”>
<div class=” col−md−12”>

<h3>Routes</h3>
<p>The below tab l e has a l l the route s that are cu r r en t l y in the bus schedu le and 20 route s that can be added by
updating the r equ i r ed parameter to Yes . The e x i s t i n g route s can be removed by changing the r equ i r ed parameter to
No . Once you have changed the route s appropr i a t e l y you can run the s imu la t ion .
</p>

<table class=” tab l e table−bordered table−hover table−s t r i p ed ”>
<thead>

<tr>
<th>Id</th>

<th>Star t Time</th>
<th>Star t Loc</th>
<th>End Loc</th>

<th>Required ?</th>
</ tr>

</thead>
<tbody>

<tr>
<td>1</td>
<td>Mark</td>
<td>Otto</td>
<td>@mdo</td>

<td>Yes</td>
</ tr>
<tr>

<td>2</td>
<td>Jacob</td>
<td>Thornton</td>
<td>@fat</td>

</ tr>
<tr>

<td>3</td>
<td>Larry</td>
<td>the Bird</td>
<td>@twitter</td>

</ tr>
</tbody>

</ table>
</div>

</div>
</div>

</div>

<script>
goog le . char t s . load (’ current ’ , {packages : [’ corechart ’ , ’ bar ’] }) ;
goog le . char t s . setOnLoadCallback () ;

$ (func t i on () {

$ (’ button ’) . c l i c k (func t i on () {
event . preventDefau l t () ;

$. a jax ({
ur l : ’/Run ’ ,
data : $(’#form ’) . s e r i a l i z e () ,
type : ’POST’ ,
su c c e s s : func t i on (response) {

r e s = JSON. parse (response) ;
// conso l e . l og (response) ;

54

document . getElementById (’ Results ’) . innerHTML = ’We used ’ + r e s . Busses +’ busses that drove ’ +r e s . Distance +
’ k i l omet r e s to execute a l l ’+ r e s . Routes+’ route s . ’ ;
$(’# re su l t sD iv ’) . show (” slow”) ;

dayCapac i t i e s = re s . Capac i t i e s ;
document . getElementById (’DC1 ’) . innerHTML = dayCapac i t i e s [0] ;
document . getElementById (’DC2 ’) . innerHTML = dayCapac i t i e s [1] ;
document . getElementById (’DC3 ’) . innerHTML = dayCapac i t i e s [2] ;
document . getElementById (’DC4 ’) . innerHTML = dayCapac i t i e s [3] ;
document . getElementById (’DC5 ’) . innerHTML = dayCapac i t i e s [4] ;
document . getElementById (’DC6 ’) . innerHTML = dayCapac i t i e s [5] ;
document . getElementById (’DC7 ’) . innerHTML = dayCapac i t i e s [6] ;

n i gh tCapac i t i e s = re s . nCap ;
document . getElementById (’NC1 ’) . innerHTML = nightCapac i t i e s [0] ;
document . getElementById (’NC2 ’) . innerHTML = nightCapac i t i e s [1] ;
document . getElementById (’NC3 ’) . innerHTML = nightCapac i t i e s [2] ;
document . getElementById (’NC4 ’) . innerHTML = nightCapac i t i e s [3] ;

l o c a t i o n . hash = ”#Resu l t s ” ;
var Gdata = re s . Data ;
drawStacked (Gdata) ;

} ,

}) ;
}) ;

}) ;

f unc t i on drawStacked (Gdata) {
var data = new goog le . v i s u a l i z a t i o n . DataTable () ;
data . addColumn (’ number ’ , ’Time o f Day ’) ;
data . addColumn (’ number ’ , ’ Transporting ’) ;
data . addColumn (’ number ’ , ’ Pos i t i on ing ’) ;

data . addRows(Gdata) ;
// conso l e . l og (Gdata) ;

var opt ions = {
t i t l e : ’Bus U t i l i z a t i o n Throughout the Day ’ ,
i sS tacked : true ,
hAxis : {

t i t l e : ’Time o f Day (min past 00 : 00) ’ ,
viewWindow : {

min : [7 , 30 , 0] ,
max : [17 , 30 , 0]

}
} ,
vAxis : {

t i t l e : ’ U t i l i z a t i o n ’
}

} ;

var chart = new goog le . v i s u a l i z a t i o n . ColumnChart (document . getElementById (’ char t d iv ’)) ;
chart . draw (data , opt ions) ;

}
</ script>
</body>
</html>

55

Appendix C

Industry Sponsorship Form

56

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Introduction
	Project Overview
	The South African Bus Industry
	BUSCO and their Duty Master Specifications
	Problem Statement
	Research Design and Methodology
	Document Structure

	Literature Review
	The Importance of Modelling and Model Use
	BUSCO's intended model use
	Pidd's framework of model use
	Classifying the project's model
	Model validation

	Vehicle Routing Problem
	Bin Packing Problem
	Solution Methods
	Exact Methods vs Metaheuristics
	Metaheuristics vs Classical Heuristics
	GRASP Metaheuristic

	Fourier-E's Genetic Algorithm
	Conclusion

	Development of the Duty Master Model
	Defining the Problem Mathematically
	Algorithm
	Selecting the algorithm
	Algorithm logic
	Comparison and validation
	GRASP

	User Interface
	Interface inputs
	Interface outputs

	Connecting the User Interface and Algorithm
	Conclusion

	Results and Discussion
	Current Allocation vs Recommended
	Simulations with Changing Day Depot Capacities
	Depot underutilization
	The potential for increasing depot capacity

	Simulations with Changing Overnight Depot Capacities
	Simulations with Adding Routes
	Simulation for Potential Performance and Implementation
	Increasing bus speed
	Manipulating buffer parameters

	Conclusion
	Python
	Algorithm
	Distance Matrix Formatter
	Route Formatter
	Functions For Analysis
	GRASP Controler
	Edit Routes

	Website
	Flask Main
	Simulation User Interface

	Industry Sponsorship Form

