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ABSTRACT 
The compressor of a proton exchange membrane fuel cell 

for automotive application requires severe dynamic 
performance under normal operating conditions. Since the air 
flow rate with a compressor should cover a wide range of 
operating conditions, it is necessary to understand the operating 
trajectory of the compressor. In this study, a simulation model 
of an automotive fuel cell system with a dynamic compressor is 
developed to explore the proper trajectory of the air flow rate 
on the performance chart of an air compressor. A dynamic 
simulation model of a compressor is composed of manifold 
dynamics of a supply and return line, static compressor model, 
and dynamic motor model. From the compressor to the fuel cell 
stack is considered as a plenum and an orifice between them is 
also assumed. An active control valve is also considered at the 
exit of fuel cell stack so that the surge can be actively rejected. 
The control strategy of a variable pressure compressor is 
concentrated on rejection of surge over various operating 
conditions under the load demands of driving mode. 

 
INTRODUCTION 

The centrifugal compressor is widely used from the internal 
combustion engine to the energy industry, to pressurize air 
flows. In the case of the automotive fuel cell, the centrifugal 
compressor is responsible for supplying pressurized air to the 
fuel cell stack. High pressure operation of a fuel cell stack 
improves the performance and compact the packaging space for 
the system. When fuel cells are equipped in automobiles, SUVs 
are the typical application. However, since the sedan is a target 
of automotive fuel cell system, variable pressure operation is 
required to improve the performance with compact stacking [1]. 

A Surge is an unstable operating mode of compressor 
systems that occurs at low mass flow where the pressure 
delivered by the compressor is less than the plenum pressure 
[2]. As a compressor is operated under a dynamic environment, 
compressor surge can occur. The surge can damage the 
compressor, and the durability of whole system is difficult 

ensure. Since automotive fuel cells must be operated at a wide 
range of pressures, the compressor of the fuel cell must avoid 
the surges phenomenon. 

NOMENCLATURE 
 
ψ [-]  Head parameter 
U [m/s] Blade tip speed 
Φ [-] The normalized compressor flow rate 
ρ [kg/m3] density 
W [kg/s] Air mass flow rate 
R [J/molK] Gas constant 
T [K] Temperature 
p [pa] Pressure  
M [-] Mach number  
d [m] diameter  
A [m2] Nozzle area 
V [V] Stack voltage 
P [kW] Stack power 
 
Special characters 
α [-] Reference coefficient at supply manifold 
λ [-] Water content of H2O/SO-3  
B [-] Reference coefficient at cathode manifold 
η [V] Cathode over-potential 
γ [-] Ratio of specific heat 
 
Subscripts 
cp,in  Compressor in 
cp,out  Compressor out 
cp  compressor 
a  Air 
cr  Air mass flow of compressor 
max  Maximum  
0  Compressor inlet pressure 
1  Compressor outlet pressure 
sm,out  Supply manifold out 
sm  Supply manifold 
Nern  Nernst 
FC  Fuel cell 
ca  Cathode manifold 
Ca,out  Cathode manifold out 
ca  Cathode manifold 
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The plot of mass flow rate is shown in Fig.1. If the pressure 

difference between ݌ଵand݌ଶ is relatively small, the mass flow 
rate is equal for various manifold pressures due to Equation (4) 
~ (6). Therefore, a small mass flow rate region can be 
calculated by a linearized form of Equation (4):  

 
)( 21 ppkW                 (7) 

 
Where,  k  is the valve opening coefficient.  
As shown in Equation (7), k is increased from 25% to 100% 

and mass flow rate is increased as well.  
 

 Model of a supply manifold 
A supply manifold supplies air from the compressor outlet 

to the cathode of the fuel cell stack. The Inlet air flow rate to 
the cathode side is determined by the pressure difference 
between the compressor exit and cathode inlet of fuel cell stack. 
Since the pressure difference between the supply manifold and 
the cathode is relatively small (7), the nozzle equation of supply 
manifold is determined by a linearized form. 

 
)(,, casmoutsmoutsm ppkW                (8) 

Where, 　 is reference coefficient, 6106294.3   
 
The mass flow rate in the supply manifold is calculated by 

conservation of the mass equation and the ideal gas law. 
 

)( ,outsmcp
sm WW

dt

dm
               (9) 

)( ,, smoutsmoutcpcp
sm

asm TWTW
V

R

dt

dp



           (10) 

 
Model of cathode air flow rate 

A flow-passing cathode of a fuel cell stack enters the return 
manifold. The air flow rate can be considered as a cathode air 
flow rate and the air flow rate is supplied by the pressure 
difference between the cathode downstream and the return 
manifold. Since the pressure difference between the supply 
manifold and the cathode is relatively small, the nozzle 
equation of the cathode outlet flow rate is determined by a 
linearized form.  
 

)(,, ppkW caoutcaoutca               (11) 

 

Where, 　 is reference coefficient, 6101776.2   

The temperature of the air leaving the stack is relatively low 
when compared to the air leaving the compressor. Therefore, 
the mass conservation principle is used to calculate mass flow 
rate in the return manifold.  

               

)( ,, outrmoutca
rm WW

dt

dm
             (12) 

)( ,, outrmoutca
rm

arm WW
V

R

dt

dp



           (13) 

 
 Model of the return manifold 

As shown in Fig. 1, if the pressure difference is large, a 
nonlinear form is used to calculate the mass flow rate.  

Therefore, Because of the pressure drop between the return 
manifold and the atmospheric is relatively large, and the return 
manifold out flow rate is designed by nonlinear nozzle 
equations. (11) 
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The outlet mass flow rate is a function of the manifold 

pressure, ݌௥௠ , and the pressure downstream from the 
manifold ௔௧௠݌	 . The valve opening area, ்ܣ,	 is constant or 
variable, but this study set is constant because 
݇௦௠,௢௨௧	ܽ݊݀	݇௖௔,௢௨௧ are variables to control surge. 

 
System integration with an automotive fuel cell stack  

In this study, a fuel cell system is composed of a 
compressor, manifolds (supply and return), a humidifier, a 
hydrogen supply model, a fuel cell stack and a cooling system. 
Referenced from Han et al. (11) and Yu et al (11), a fuel cell 
mode was constructed to model species mass transfer and an 
energy conservation equation. Therefore, the fuel cell voltage 
and power is calculated from 

 
  memNernFC RJVV )(           (16) 

FCFCcv nJVP               (17) 

 
Dynamic simulation  

A typical vehicular fuel cell system was used in this study 
because transient response is very important in the vehicle and 
surge control is very important during various operating  

 
Table 1 Compressor nozzle opening area with cases 

 
Case

Nozzle opening area 
percent(Ksm) 

Nozzle opening area 
percent(Kca) 

1 25% 25% 
2 25% 50% 
3 25% 75% 
4 25% 100% 
5 50% 25% 
6 50% 50% 
7 50% 75% 
8 50% 100% 
9 75% 25% 
10 75% 50% 
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The performance curve is in good agreement with that of 
the compressor map. If the control valve is installed 
downstream of the cathode manifold good trajectory is 
achieved.  

Therefore, the combination of CCV and TCV is needed to 
control surge. Also, when the load is 80%, the surge 
phenomenon can be controlled only if CCV opens over 75% 
and TCV opens at least over 75%.  
 

CONCLUSION  
 

In this study, a dynamic simulation of an automotive fuel 
cell system was developed to understand compressor surge over 
load changes. 

 
1. The surge effect can be effectively reduced by increasing 

the cak  nozzle coefficient, but the nozzle of the compressor 

downstream does not affect the avoidance of surge at 80%. 
2. When the system operates at 15% and 30%, case 16 

shows the highest efficiencies of 77.4% and 78.6%, 
respectively. As the system operate at 50% and 65%, case 1 
results in high efficiencies 78.9% and 78.6%, respectively. And 
at 80% and 100%, case 16 results in high efficiencies 76.7% 
and 75.0%, respectively. 

3. The calculation shows that ݇௦௠, ݇௖௔ ൌ 100% and gained 
0.8% net energy savings for the compressor system. 

4. Accordingly, the active control of a combination of CCV 
and TCV is necessary to achieve active surge reduction as well 
as efficient operation. 
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