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ABSTRACT 

We investigate the temperature dependence of the thermal 

diffusivity for a large ceramic body of a cylindrical shape 

during firing up to 900 °C. The body was made of a ceramic 

material used in the production of electroporcelain insulators. 

We describe the corresponding heat transfer by the standard 

heat equation and solve the inverse problem by the Levenberg-

Marquardt method. The results show that the method allows 

one to detect the physical-chemical processes occurring in the 

material during firing, namely, the liberation of physically 

bound water in the range up to 250 °C, the phase 

transformation of kaolinite into metakaolinite (dehydroxyla-

tion) in the range ~ 450 °C – 650 °C, and solid-state sintering 

starting at ~ 700 °C. 

 

 

INTRODUCTION 
Physical properties of composite materials like ceramics are 

necessarily affected by various processes (phase transfor-

mations, chemical reactions, etc.) that may take place in the 

materials during their thermal treatment. In particular, this is 

true for the temperature dependence of the thermal diffusivity. 

Isothermal measurement methods – for example, the standard 

flash method [1,2] – are not capable of registering the influence 

of such processes. A convenient approach to this problem is the 

use of inverse methods [3] that enable one to estimate, quite 

generally, various kinetic parameters from experimental data. 

In the case of the thermal diffusivity the data correspond to the 

time and position dependence of the temperature in the 

material. 

In kaolin-based ceramics three main processes occur in the 

firing range 20 – 900 °C [4-6]:  

(A) the liberation of physically bound water in the range up 

to 250 °C;  

(B) the phase transformation of kaolinite into metakaolinite 

(i.e., dehydroxylation) in the range ~ 450 °C – 650 °C; 

(C) solid-state sintering starting at ~ 700 °C. 

As a rule, these processes may significantly affect the 

temperature dependence of the diffusivity in their respective 

temperature ranges, resulting in dramatic changes in the 

diffusivity. It is the aim of this paper to determine the thermal 

diffusivity as depending on the temperature for an alumina 

ceramic material used in the production of electric insulators, 

using the inverse approach and compare the results with those 

obtained by the flash method in which the processes A – C 

cannot be recorded. 

 

NOMENCLATURE 
 
a [m2/s] Thermal diffusivity 

L [m] Sample thickness 
r [m] Radial position 

T [K] Temperature 

t [s] Time  
 

Special characters 

μ [-] Damping parameter 
ρ [kg/m3] Density  

 

Subscripts 
bd  Boundary temperature 

exp  Temperature data from experiment 

est  Estimated temperature values from an inverse analysis 
fin  Final time 

in  Initial time or temperature 

Tr  Transposed matrix 

 

EXPERIMENTAL 
Samples were prepared from a wet plastic ceramic mass that 

was provided by the electro-porcelain plant PPC Čab, Slovakia, 

a member of the international PPC Insulators group. The initial 

composition of the ceramic material was: 48 wt. % of kaolin 

and clay, 30 wt. % of alumina, and 22 wt. % of feldspar. The 

samples were prepared to be of a cylindrical shape with the 

diameter 80 mm and length 120 mm (see Figure 1). Four holes 

of diameter 2 mm were bored in the axial direction in the 
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cylindrical samples in which thermocouples Pt-PtRh10 were 

placed to measure the time evolution of the temperature (see 

Figure 1). The radial distances of the thermocouples were as 0 

cm (the samples’ center), 1 cm, 2 cm, and 3 cm. The heating 

rate was chosen as 2 °C/min. The experimentally measured 

time dependences of the temperatures at the four positions are 

shown in Figure 2. 

 

Figure 1 A cylindrical sample with holes for four thermo-

couples 

 

 
Figure 2 The measured temperature data at the radial positions 

0 cm (full line), 1cm (dashed line), 2 cm (dotted line), and 3 cm 

(dot-dashed line) 

 

For the sake of comparison of results, we also employ the 

standard flash method [7,8] to measure the thermal diffusivity. 

The method is based on the measurement of a thermal response 

of a studied material to a short heat pulse. The response is 

measured near one face of the material, while the pulse initially 

impacts and heats the opposite face. Since the time dependence 

of the thermal response, T(t), can be determined analytically, it 

is possible to calculate the thermal diffusivity by fitting the 

theoretical dependence to experimental data. To simplify the 

analysis, one usually uses just a single experimental value of 

the thermal response T(t), namely, at the time t1/2 at which the 

response attains 1/2 of its maximal value. Then the thermal 

diffusivity can be calculated from the simple formula a = 

0.1388 L
2
/t1/2, where L is the sample thickness. In our 

measurements we used a device whose highest operating 

temperature is 650 °C (see [7, 8] for details). 

 

THEORETICAL 
We assume that the heat transport in the cylindrical samples 

was solely due to conduction and that it can be described by the 

one-dimensional sourceless heat conduction equation [9]:  
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The thermal diffusivity a = a(T) generally varies with the 

temperature. Using experimentally obtained values of T in 

dependence on r and t, we shall employ an inverse method to 

estimate the values of a(T). 

 

Direct Problem 

The direct problem consists in solving Eq. (1) for T(r,t), as 

long as initial and boundary conditions are specified and the 

diffusivity a is a known function of the temperature. Our 

experimental situation corresponds to the initial condition:  

RrrTtrT  0),(),( inin
    (2) 

Here Tin(r) is the radial distribution of the temperature at an 

initial time tin and R = 3 cm is the maximal radial position for 

which Eq. (1) is solved. The boundary conditions are as 

follows:  
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Here Tbd(t) is the time dependence of the temperature at the 

largest radial position R and tfin is a final time up to which the 

direct problem is solved. The second boundary condition 

expresses the radial symmetry of the temperature distribution in 

a cylindrical body.  

Once the function a(T) is known, Eqs. (1) – (3) can be 

solved, yielding a unique solution T(r,t) in the solution domain 

0 ≤ r ≤ R and tin ≤ t ≤ tfin. Hence, the direct problem is a well-

posed type of mathematical problem: its solution satisfies the 

requirements of existence, uniqueness, and stability with 

respect to the input data [10].  

 

Inverse Problem 

The inverse problem of estimating the thermal diffusivity 

a(T) is opposed in formulation to the direct problem: knowing 

experimental values of T(r,t) for an ensemble of positions rk 

and times tl, the dependence a(T) is estimated from Eqs. (1) – 

(3). This is not a well-posed type of a mathematical problem in 

the above sense. Nevertheless, it can be reformulated as such 

(for example, as a minimization problem [10]). Indeed, it has 

been conveniently used to estimate heat and mass transfer 
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parameters in many applications (see, for example, [11-19]). 

The inverse approach to the estimation of the diffusivity is a 

nonlinear problem due to its temperature dependence. Thus, we 

consider only the data for which the measured temperatures are 

within a relatively small interval so that a(T) can be 

approximated by a constant. To this end, we split the studied 

temperature range 20 °C – 800 °C into n small intervals of 

width 4 °C and represent a(T) by constant values a1, …, an in 

these intervals. We use a to denote the vector (a1, …, an) of 

estimated values of the thermal diffusivity in the n temperature 

intervals.  

The inverse problem is reformulated as a minimization of 

the weighted least-square norm: 

)]([)]([)( estexpTrestexp
aTTWaTTa S   (4) 

Here T
exp

 = (T
exp

(rk,tl)) is the vector of the 4m measured values 

of the temperature at the four thermocouple positions rk and m 

times tl, while T
est

(a) = (T
est

(rk,tl)) is the vector of the 4m 

estimated values of the temperature at positions rk and times tl 

as obtained from the solution of the direct problem with a(T) 

represented by a. The matrix W is a diagonal matrix with 

diagonal elements equal to the inverse of the variances of the 

measurements. 

To solve the inverse problem, we employ the Levenberg-

Marquardt method [20,21]. It is based on an iterative procedure 

in which the diffusivity vector a
(i+1)

 in the (i+1)-th step is 

related to the diffusivity vector a
(i)

 in the preceding step as a
(i+1)

 

= a
(i)

+∆a
(i)

, where the corresponding change is:  
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The sensitivity matrix Ji = ∂T
est

(a
(i)

)/∂a
(i)

 is the 4m × n matrix 

whose n columns contain the derivatives of the 4m estimated 

temperature values in the i-th step with respect to the i-th step 

value aj  (with j = 1, …, n) and μi is a damping parameter. At 

the beginning of the iteration procedure μi is usually taken large 

and then it is gradually decreased. However, if instabilities are 

generated during the iteration procedure, μi should be increased, 

making the Levenberg-Marquardt method rather stable. 

Therefore, if in the (i+1)-th step the norm Si+1 is less (more) 

than the value Si in the i-th step, we set μi+1 = μi/10 (μi+1 = 10μi). 

The solution algorithm for the Levenberg-Marquardt 

method may slightly vary, depending on the specific problem. 

We employed the version described in [11,13,22] with the 

stopping criterion given as:  
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The prefixed positive tolerance was chosen as ε = 0.01. The 

evaluation procedure in the domain [0, R] × [tin, tfin] was 

repeated until the stopping criterion (6) was satisfied. 

Afterwards, the same procedure was initiated for the next 

domain, with the starting value of the diffusivity taken as its 

resulting value in the previous interval. To carry out the 

Levenberg-Marquardt inverse analysis, we employed the 

numerical computing environment MATLAB. 

RESULTS AND DISCUSSION 
The experimental data for the time evolution of the 

temperature at four radial positions in Figure 2 show two 

notable deviations from a practically linear increase. One 

occurs in the range 20 – 200 °C and the other one between 

~570 °C and 700 °C. In both cases the increase of the 

temperature is slower than linear. So, they both correspond to 

endothermic reactions: the reaction at lower temperatures is due 

to the liberation of physically bounded water, while the reaction 

at higher temperatures is due to the dehydroxylation (when 

thermal energy is used for the liberation of chemically bounded 

water). These two reactions should influence the profile of the 

temperature dependence of any macroscopic property of the 

studied ceramic material, including the thermal diffusivity. 

The temperature dependence of the thermal diffusivity as 

obtained by the inverse method applied to the measured data 

from Figure 2 is shown in Figure 3. A rather fast decrease in a 

from ~ 5.0 × 10
–7

 m
2
/s  by about 45 % in the range 20 – 200 °C 

is associated with the above-mentioned liberation of physically 

bounded water. We thus conclude that humidity increases the 

thermal diffusivity, as should be expected. 

In the following range, ~200 °C – 550 °C, no reactions 

occur in the studied material, and the thermal diffusivity is 

practically constant, around 2.7 × 10
–7

 m
2
/s.  

However, a sudden drop in a to ~ 0.6 × 10
–7

 m
2
/s takes 

place in the range 550 – 650 °C that corresponds to the interval 

where the dehydroxylation starts. So, this process affects the 

thermal diffusivity to a large extent.  

  

 
Figure 3 The temperature dependence of the thermal 

diffusivity calculated by the inverse method (dots) and 

measured by the flash method (squares)   

 

 

Finally, above ~ 650 °C where the dehydroxylation is 

finished, the thermal diffusivity increases fast, to ~ 2.2 × 10
–7

 

m
2
/s. After that it is almost constant; at these temperatures 

solid-state sintering begins. 

Accuracy of the dependence a(T) obtained by the inverse 

analysis and shown in Figure 3 may be verified by using the 

dependence to solve the direct problem. That is, we may 

numerically solve the heat equation (1) with the thermal 

diffusivity from Figure 3 and compare the result with the 

1401



    

experimental data in Figure 2. The two sets of results are in 

very good agreement in the whole studied temperature range, 

the root mean square error being only 0.82 K.  

Finally, in Figure 3 we also present the results on the 

temperature dependence of a as measured by the flash method. 

Clearly, these do not enable one to detect the processes that 

occur in the studied ceramic material during firing. Indeed, the 

profile of a(T) exhibits a steady decrease from its initial value ~ 

3.8 × 10
–7

 m
2
/s (at 20 °C) to ~ 1.8 × 10

–7
 m

2
/s (at 650 °C). The 

only exception is between 20 and 150 °C where the decrease is 

visible and is associated with the liberation of physically 

bounded water. Note that the thermal diffusivity as obtained by 

the flash method is at most temperatures slightly lower than the 

one obtained by the inverse method. 

 

CONLUSIONS  
We employed an inverse method to estimate the 

temperature dependence of the thermal diffusivity for an 

alumina ceramic material used in the electro-porcelain industry 

in the temperature range 20 – 800 °C. The results were able to 

record the physical-chemical processes occurring in the 

material during firing: the liberation of physically bound water 

(20 – 200 °C) and the dehydroxylation of kaolinite into 

metakaolinite (550 – 650 °C). Our numerical results were 

verified by using the obtained thermal diffusivity to solve the 

direct problem and compare the resulting temperature field with 

the experimental data. Very good agreement was achieved. We 

also employed the standard flash method to measure the 

thermal diffusivity. However, due to its isothermal nature, the 

methods yielded results that could not detect the processes 

taking place in the material during firing.  
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