

A MACROECONOMETRIC FRAMEWORK FOR CREDIT PORTFOLIO MODELLING IN SOUTH AFRICA

by

ALBERTUS HENDRIK DE WET

Submitted in partial fulfilment of the requirements for the degree

PhD (Econometrics)

in the

FACULTY OF ECONOMIC AND MANAGEMENT SCIENCES

at the

UNIVERSITY OF PRETORIA

March 2008

© University of Pretoria

SUMMARY

A MACROECONOMETRIC FRAMEWORK FOR CREDIT PORTFOLIO MODELLING IN SOUTH AFRICA

by

ALBERTUS HENDRIK DE WET

Supervisor:
Co-supervisor:
Department:
Degree for which the thesis is submitted:

Prof R. van Eyden Prof R. Gupta Economics PhD (Econometrics)

Abstract

Driven by intense competition for market share, banks across the globe have allowed credit portfolios to become less diversified (across all dimensions – country, industry, sector and size) and have become willing to accept lesser quality assets on their books. As a result, even well capitalised banks could come under severe solvency pressure when global economic conditions turn. The banking industry has realised the need for more sophisticated loan origination and credit and capital management practices. To this end the reforms introduced by the Bank of International Settlement through the New Basel Accord (Basel II) aims to include exposure specific credit risk characteristics within the regulatory capital requirement framework, but is still not able to allow diversification and concentration risk to be fully recognised within the credit portfolio. In order to enhance earnings and liquidity profiles, active credit portfolio management is becoming a central part of capital management within the banking industry. If any risk mitigation or value enhancing activity is to be

pursued, a credit portfolio manager must be able to identify the interdependencies between exposures in a portfolio and relate macroeconomic credit risk into tangible portfolio effects.

The core principle for addressing practical questions in credit portfolio management lies in the ability to link the cyclical or systematic components of firm credit risk with the firm's own idiosyncratic credit risk as well as the systematic credit risk component of every other exposure in the portfolio. Most structural credit portfolio management approaches have opted to represent the general economy or systematic risk by a single risk factor. The systematic component of all exposures, the process generating asset values and therefore the default thresholds are homogeneous across all firms. Indeed this Asymptotic Single Risk Factor (ASRF) model has been the foundation for Basel II. However the ASRF approach does not allow for enough flexibility when answering real life questions. Commercially available credit portfolio models have made an effort to address this issue by introducing more systematic factors in the asset-value-generating process. From a practitioner's point of view, however, these models are often a "black-box" which allows little economic meaning or inference to be attributed to systematic factors.

The methodology proposed by Pesaran, Schuermann, Treutler and Weiner (PSTW) (2006) has made a significant advance in credit risk modelling because it avoids the usage of proprietary balance sheet and distance to default data, instead focussing on credit ratings which are more freely available. Linking an adjusted structural default model to a structural global econometric (GVAR) model means that credit risk analysis and portfolio management can be done by using a conditional loss distribution estimation and simulation process. The GVAR model used in PSTW (2006) comprises a total of 25 countries and accounts for 80 per cent of world production, but does not include an African component.

This thesis proposes a country-specific macroeconometric risk driver engine which is compatible with and could feed into the GVAR model and framework using vector error-correcting (VECM) techniques. This allows conditional loss estimation of a South African-specific credit portfolio and opens the door for credit portfolio modelling on a global scale because such a model can easily be linked into the GVAR

model. By using firm-specific asset value functions, the outcomes from the macroeconometric vector error-correcting model (VECM) is translated into default probabilities and used to perform credit risk analysis and scenario analysis on a fictitious portfolio of corporate bank loans within the South African economy. These results can be used in credit portfolio management or standalone credit risk analysis which means that practical credit portfolio management and value enhancing applications can be performed.

ACKNOWLEDGEMENTS

I've been blessed in my life with immeasurable treasures none as important as the family and friends that have directly and indirectly influenced my life. You have made me who I am today. I dedicate this thesis to you in the hope that the gesture serves in some small way to thank you for your endless and unselfish contributions to my life.

To our Lord Jesus Christ, I would like to bring all praise and thanks for his never ending grace and love in my life. To You I owe everything.

CONTENTS

LIST OF FIGURES viii			
LIST OF TABLES ix			
LIST O	F ABBREVIATIONS	х	
1	CREDIT RISK AND PORTFOLIO MODELLING	1	
1.1	INTRODUCTION	1	
1.2	DEFINING CREDIT RISK AND PORTFOLIO MODELLING	2	
1.3	STRUCTURAL DEFAULT MODELS	6	
1.4	POSITIONING THE STUDY WITHIN THE LITERATURE	6	
1.5	METHODOLOGY	7	
1.6	DATA	10	
1.7	OUTLINE OF THE STUDY	10	
2	A THEORETICAL FRAMEWORK FOR ESTIMATING A		
	CONDITIONAL PORTFOLIO LOSS DISTRIBUTION: THE		
	PESARAN, SCHUERMANN, TREUTLER AND WEINER (2006)		
	METHODOLOGY	12	
2.1	INTRODUCTION	12	
2.2	AN ADJUSTED MERTON-BASED MODEL OF DEFAULT	14	
2.3	FIRM-SPECIFIC DEFAULTS	20	
2.4	CONDITIONAL CREDIT RISK MODELLING	22	
2.4.1	The macroeconomic risk driver model	22	
2.4.1.1	Introduction	22	
2.4.1.2	The global error-correcting macroeconometric model	23	
2.4.1.3	Individual-country VECMs	24	
2.4.1.4	Solving the GVAR model	28	
2.4.1.5	Short-run dynamics of the global model	30	
2.4.1.6	Forecasting and dynamic properties of the GVAR model	32	
2.4.1.7	Impulse response and scenario analysis	35	

2.4.2	Using individual-country models to construct the GVAR	
	model	38
2.5	FIRM-SPECIFIC RETURN DYNAMICS	42
2.6	LOSS GIVEN DEFAULT AND EXPECTED LOSS	
	ESTIMATION	44
2.7	SIMULATING THE LOSS DISTRIBUTIONS	47
2.8	CONDITIONAL DEFAULT AND CONDITIONAL EXPECTED	
	LOSS	48
2.9	MULTI-PERIOD LOSS DISTRIBUTIONS	50
2.9.1	Baseline multi-period loss distribution	51
2.9.2	Conditional multi-period loss distribution	52
2.10	CONCLUSION	53
3	AN EMPIRICAL APPLICATION OF A SOUTH AFRICAN	
	GLOBAL ERROR CORRECTING MACROECONOMETRIC	
	MODEL	54
3.1		54
3.2	DATA SOURCES AND GLOBAL VARIABLE TIME SERIES	
	CONSTRUCTION	56
3.2.1	The trade weights	56
3.2.2	Global macroeconomic variables and data sources	57
3.2.3	Domestic and exogenous macroeconomic variables and data	
	sources	64
3.3	INTEGRATION PROPERTIES OF THE TIME SERIES	72
3.4	COINTEGRATING RANK PROPERTIES OF THE SYSTEM	77
3.5	IMPOSING IDENTIFICATION RESTRICTIONS ON THE	
	VECM SYSTEM	78
3.6	ESTIMATION RESULTS	80
3.7	RESIDUAL DIAGNOSTICS AND VECM STABILITY TEST	84
3.8	DYNAMIC PROPERTIES OF THE VECM	84
3.9	STOCHASTIC FORECAST PROPERTIES OF THE VECM	86
3.10	CONCLUSION	87

4	DEFAULT RISK AND CONDITIONAL CREDIT PORTFOLIO	
	LOSS SIMULATION	90
4.1	INTRODUCTION	90
4.2	DEFAULT THRESHOLDS BY RATING CATEGORY	90
4.3	THE SAMPLE PORTFOLIO	95
4.4	FIRM-SPECIFIC RETURN REGRESSIONS	97
4.4.1	Pooled panel data model for portfolio-wide return estimates	98
4.4.2	Fixed and random effects panel data model for portfolio-wide	
	return estimates	99
4.4.3	Firm-specific multi-factor models	101
4.5	CONDITIONAL LOSS ESTIMATION AND SCENARIO-	
	ANALYSIS RESULTS	106
4.6	CONCLUSION	110
5	SUMMARY AND CONCLUDING REMARKS	111
5.1	INTRODUCTION	111
5.2	SUMMARY RESULTS OVERVIEW	112
5.2.1	Basic model outline and methodology	112
5.2.2	Empirical results	113
5.3	AREA OF FUTURE RESEARCH	117
5.4	CONCLUSION	118
BIBLIOGRAPHY		119
APPEN	IDIX A: FIRM-SPECIFIC RETURN MODELS	124

LIST OF FIGURES

Figure 1.1	Credit risk: expected and unexpected loss	4
Figure 3.1	Composite global macroeconomic variables	61
Figure 3.2	South African domestic and exogenous macroeconomic variables	67
Figure 3.3	Generalised impulse response function analyses of global macroeconomic shocks	85
Figure 3.4	In-sample stochastic simulation results	88
Figure 3.5	Out-of-sample stochastic simulation results	89
Figure 4.1	Conditional loss distributions (baseline)	109

LIST OF TABLES

Table 3.1	South African trade weights	57
Table 3.2	Global data series and data sources	58
Table 3.3	Domestic and exogenous data series and data sources	65
Table 3.4	Unit root test statistics: domestic and exogenous variables	74
Table 3.5	Unit root test statistics: global variables	75
Table 3.6	Cointegration rank test statistics	77
Table 3.7	VECM estimation output	82
Table 3.8	Residual unit root and serial correlation tests	83
Table 3.9	Stability conditions: AR characteristic polynomial roots	84
Table 4.1	One and four quarter ahead return, volatility and default threshold estimates per rating category	94
Table 4.2	Sample portfolio composition	96
Table 4.3	Pooled estimation results	99
Table 4.4	Random versus fixed effects panel tests	100
Table 4.5	Fixed effects panel estimation results	101
Table 4.6	Example: individual multi-factor model	104
Table 4.7	Conditional expected loss simulation summary results	108

LIST OF ABBREVIATIONS

ADF	Augmented Dickey-Fuller
AIC	Akaike information criterion
APT	Arbitrage Pricing Theory
ASRF	Asymptotic Single Risk Factor
BA	Banker's acceptance
BIS	Bank of International Settlement
bps	Basis points
CDF	Cumulative default frequency
EL	Expected loss
EAD	Exposure at default
GDP	Gross domestic product
GIRF	Generalized-impulse response function
GVAR	Global vector autoregression
IFS	International Financial Statistics
INS	Information notice system
IMF	International Monetary Fund
KPSS	Kwiatkowski, Phillips, Schmidt, and Shin
LGD	Loss given default
MGE	Mean-group estimators
OIR	Orthogonalised-impulse-response
PD	Probability of default
PSTW	Pesaran, Schuermann, Treutler and Weiner
PSW	Pesaran, Schuermann and Weiner
q.a.	Quarter on quarter annualised

- SARB South African Reserve Bank
- Stats SA Statistics South Africa

SD Standard deviation or unexpected loss

- Tbill Treasury bill
- UL Unexpected loss
- VAR Vector autoregression
- VECM Vector error-correcting model