

1-Hexene dimerisation over a solid phosphoric acid catalyst

Renier Bernhard Schwarzer 1 February 2012

A thesis submitted to the Faculty of Engineering, the Built Environment and Information Technology of the University of Pretoria, Pretoria, South Africa, in partial fulfilment of the requirements for the degree of Philosophiae Doctor (Chemical Engineering)

> Supervisor: Prof. W. Nicol Co-supervisor: Mrs E.L. du Toit

$$\begin{bmatrix} \cos 90^{\circ} & \sin 90^{\circ} \\ -\sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & \Omega_{2}}_{12}$$

http://www.xkcd.com/184

Abstract

Solid phosphoric acid is a catalyst used for the upgrading of light olefins into fuels. To delve into the mechanism of olefin dimerisation over the catalyst, the oligomerisation of 1hexene was investigated over a wide range of operating conditions. The reaction progression of 1-hexene dimerisation over solid phosphoric acid was interpreted by means of kinetic experiments for both a linear hexene (1-hexene) and a branched hexene (2,3-dimethylbutene). The reaction rate for both reagents was described by using an elementary kinetic model. From the experimental data it was shown that the rate of dimerisation of branched hexenes was faster than the rate observed for linear hexene dimerisation. To correlate the two sets of kinetic data, the reaction network was expanded to incorporate skeletal isomerisation of 1-hexene with dimerisation only taking place by the co-dimerisation of linear and branched hexenes and the dimerisation of branched hexenes. The fit of the kinetic equation demonstrated that the reaction rate of 1-hexene is essentially controlled by the rate of skeletal isomerisation. Due to the large activation energy for skeletal isomerisation, low reaction temperatures favoured the co-dimerisation of linear and branched hexenes whereas at higher temperatures, the reaction rate was dominated by the dimerisation of branched hexenes. The product distribution indicated that, because of the fast rates of both cracking and secondary dimerisation (dimerisation of cracked products), the product distribution instantaneously reached a pseudo equilibrium after the dimerisation of hexenes. Therefore the carbon distribution was found to depend only on the reaction temperature, not on the residence time in the reactor.

Solid phosphoric acid is a supported liquid phosphoric acid where the condensed state of the acid, e.g. ortho phosphoric acid (H₃PO₄) and pyro phosphoric acid (H₄P₂O₇), is dependent on the quantity of water present in the reaction mixture. With a decrease in water content, the distribution of acid shifts and the ortho phosphoric acid becomes more condensed (H₄P₂O₇, H₅P₃O₉ etc.), i.e. high water content \rightarrow low acid strength, low water content \rightarrow high acid strength. The experiments completed at various degrees of catalyst hydration and free acid loading showed that the rate of reaction over solid phosphoric acid was dependent on the acid strength of the catalyst. The effect of acid strength on the reaction rate was integrated into the rate constants by means of an exponential dependency on acid strength. It was also shown that both the product distribution and the degree of branching remained unaffected by acid strength. The constant product indicates that the rate of cracking is limited by the rate of

oligomerisation of hexenes, irrespective of the acid strength of the catalyst. Since the product from the dimerisation of 1-hexene could be used as fuel, the quality of the desired fuel would therefore depend solely on the reaction temperature, not on the hydration of the catalyst. The work performed in this thesis has been published in two peer-review articles:

- Schwarzer R.B., du Toit E. and Nicol W. (2008) Kinetic model for the dimerisation of 1-hexene over a solid phosphoric acid catalyst, *Applied Catalysis A: General*, 340, 119-124.
- Schwarzer R.B., du Toit E. and Nicol W. (2009) Solid phosphoric acid catalysts: The effect of free acid composition on selectivity and activity for 1-hexene dimerisation, *Applied Catalysis A: General*, 369, 83-89.

Acknowledgements

My journey through postgraduate at the University of Pretoria was a memorable road to traverse, even though the journey is past the memories are treasured. I would like to thank Elizbe du Toit for her inspiration and encouragement to endure with my research, her guidance is greatly appreciated, together with Willie Nicol they kept me on the straight and narrow and steered the work to completion. Thanks also go out to Sasol Technology, whom sponsored this research, and to the colleagues whom helped direct, support and dispute the research in this thesis.

Contents

A	bstract	t		iii
N	lomenc	latur	e	viii
L	ist of F	Figure	es	x
L	ist of 7	Table	S	xiii
1	Int	roduc	ction	1-1
2	Lit	eratu	re survey	2-1
	2.1	Oli	gomerisation: Product slate	2-1
	2.2	Bac	ekground: Oligomerisation of short chain olefins over SPA	2-2
	2.3	Oli	gomerisation of light naphtha olefins over SPA	2-6
	2.4	Sol	id phosphoric acid	2-8
	2.5	Cat	alyst hydration	2-15
	2.6	Rea	action mechanism/network	2-21
	2.6	.1	Classic carbocation mechanism	2-22
	2.6	.2	Phosphoric acid ester mechanism	2-23
	2.7	Kir	etic modelling of oligomerisation over acid catalyst	2-26
	2.8	Clo	osing remarks	
3	Re	actio	n Kinetics for 1-Hexene Dimerisation	
	3.1	Bac	kground	3-1
	3.2	Exp	perimental	
	3.2	.1	Materials	
	3.2	.2	Experimental setup and method	
	3.2	.3	Analysis	3-5
	3.3	Res	sults & Discussion	3-7
	3.3	.1	Double bond and skeletal isomerisation	3-7
	3.3	.2	Dimerised and cracked products	

	3.4	Kinetic model	
	3.5	Conclusions	
4	Eff	fect of Acid Strength on 1-Hexene Dimerisation	
	4.1	Experimental	4-1
	4.1.	.1 Acid strength characterisation	
	4.2	Results and discussion	
	4.2.	.1 Reaction rate for liquid ortho and pyro phosphoric acid	
	4.2.	.2 Reaction kinetics for various acid strengths of SPA	
	4.2.	Effect of acid strength on the product spectrum	4-18
	4.3	Conclusions	
5	Pro	oduct spectrum	5-1
	5.1	Experimental	5-1
	5.2	Results and discussion	5-2
	5.2.	.1 Acid strength	
	5.3	Conclusion	5-5
6	Co	nclusions	6-1
7	Bib	oliography	
8	Ap	pendix	
	8.1	Product formation for the oligomerisation of DMB	
	8.2	GCxGC results	

Nomenclature

А	Linear hexenes isomers, mol/L
A _A	P ₂ O ₅ weight percentage (i.e. acid strength)
В	Skeletal hexene isomers, mol/L
C _x	Concentration of molecule x, mol/L
D	Hexene depletion toward dimerised product, mol/L
Ea	Activation energy, kJ/mol.K
k ₁	Kinetic constant for the rate of skeletal isomerisation, L/min.g
k _{2,3}	Kinetic constant for the rate of dimerisation and co-
	dimerisation, L ² /mol.min.g
k _{x,o}	Pre-exponential constant
$k_{_{x,A_A}}$	Acid strength rate constant dependency
K _x	Distribution of molecule x with reference to the hexene
	depletion
K _{eq}	Experimentally determined equilibrium distribution of
	branched hexenes versus dimerised product
m _{cat}	Weight concentration of catalyst in the reaction mixture, g/L
$P_2O_5^{\circ}$	SPA base phosphoric acid strength, weight fraction P_2O_5
P ₂ O ₅ (W %)	Acid strength of SPA
t	Time, min
Т	Temperature, K
W _{Free acid}	Weight-free acid determined from titration, g
W _{H2O}	Weight H ₂ O in the reaction mixture, g
V	Volume of reaction mixture, L

Abbreviations

AARE	Absolute average relative error
IB	Iso-butene
CD	Co-dimerisation of linear and branched hexenes
CFPP	Cold Filter Plugging Point
DLH	Dimerisation of linear hexenes
DBH	Dimerisation of branched hexenes
DMB	2,3-dimethyl-2-butene
df	Film thickness
FID	Flame ionisation detector
FT	Fischer-Tropsch
i.d.	Inside diameter
GC	Gas chromatography
MON	Motor Octane Number
2M1B	2-Methyl-1-butene
2M2B	2-Methyl-2-butene
MS	Mass-spectrometry
RON	Research octane number
SPA	Solid phosphoric acid
FA	Free acid

Figure symbols

\diamond	Concentration of branched hexenes
*	Concentration of linear hexenes
\bigtriangleup	Concentration of oligomerised product

List of Figures

Figure 2-1: Affect of space velocity on the conversion and RON for the oligomerisation of
C4 olefins over SPA, ● – RON, ▲ - Conversion (De Klerk, <i>et al.</i> , 2004)
Figure 2-2: Distribution of phosphoric acid as a function of P ₂ O ₅ content (Jameson, 1959).
Figure 2-4: Acid distribution with time when heating liquid phosphoric acid over and open
flame at 200 °C (Ohtsuka & Aomura, 1962)
Figure 2-5: Acid distribution over various kiezelguhr supports when heated in a muffle
furnace at 200 °C
Figure 2-6: The effect of H ₄ P ₂ O ₇ (wt %) on the conversion of propylene (Zhirong et al.,
2000)
Figure 2-7: Effect of acid strength and temperature on a) degree of branching of C ₈ olefins
and b) gasoline-to-distillate ratio for C ₄ oligomerisation, for a constant residence time, over
liquid phosphoric acid (De Klerk et al., 2006) 2-18
Figure 2-9: Effect of acid strength on the rate constant, $\circ - 98\%$ H ₃ PO ₄ , $\Box - 103\%$ H ₃ PO ₄ , \diamond
- 109% H ₃ PO ₄ (Bethea & Karchmer , 1956)
Figure 2-10: Various reactions that can occur during the oligomerisation of two olefins
(Quan <i>et al.</i> , 1988)
Figure 2-12: Phosphoric acid mechanism (Ipatieff, 1935) 2-24
Figure 2-13: The ester mechanism for a) one olefin reacting with an olefin or b) two esters
dimerising
Figure 2-14: Reaction mechanism as proposed by Farkas and Farkas (1942) 2-25
Figure 2-15: Phosphoric acid ester mechanism for skeletal and double bond isomerisation.
Figure 2-16: Reaction network for the oligomerisation of 2-methyl-1-butene (2M1B) 2-28
Figure 2-17: Reaction mechanism for McClean (1987). Reaction significance: \rightarrow
significant occurrence, \rightarrow insignificant occurrence, \rightarrow unknown occurrence, \rightarrow normal route.
Figure 3-1: Experimental setup
Figure 3-2: 1-Hexene reaction progression at 250 °C versus weight time (g _{cat} .min). Weight
fraction of: \Diamond = Linear hexene isomers; \Box = skeletal hexene isomers and \triangle = overall hexene

depletion (D). The stirrer speed is indicated by the open (500 rpm) and solid (1000 rpm) data
points
Figure 3-3: The reaction rate of 1-hexene at 250 °C (1000 rpm), where the catalyst was
ground to 150 μ m (open points) and 300 μ m (closed points). Weight fraction of: \Diamond = Linear
hexene isomers; \Box = skeletal hexene isomers and \triangle = overall hexene depletion
Figure 3-4: Hexene isomers identified by GC-FID during the dimerisation of 1-hexene at
200 °C
Figure 3-5: Isomers identified for 1-hexene dimerisation at 200 °C divided into a) linear
hexenes, b) group A branched hexenes, c) group B branched hexenes and d) group C
branched hexenes
Figure 3-6: Cracking route of dimer to branched hexenes
Figure 3-7: The reaction progression for 1-hexene dimerisation with reference to linear
hexenes, branched hexenes and hexene depletion (dimerisation) at 200 °C 3-13
Figure 3-8: Hexene isomers identified for the dimerisation of DMB at 200 °C 3-14
Figure 3-9: Isomers identified for DMB dimerisation at 200 °C divided into a) linear
hexenes, b) group A branched hexenes, c) group B branched hexenes d) group C branched
hexenes
 hexenes
hexenes
hexenes
hexenes
hexenes

Figure 3-18: $ln(K_{eq})$ for each carbon number versus 1/T for DMB dimerisation a) C ₄ , C ₅ and
C_7 , b) C_8 , C_9 and C_{10} , and c) C_{11} , C_{12} and C_{13} , the solid lines representing the carbon
distribution observed for 1-hexene dimerisation (Figure 3-17)
Figure 4-1: Dimerisation of 1-hexene at 200 °C over a) ortho phosphoric acid and b) pyro
phosphoric acid where $*$ - linear hexenes, \Diamond - branched hexenes and \bigtriangleup - total hexene
depletion
Figure 4-2: Reaction progression for the dimerisation of 1-hexene at 200 °C for acid
strengths of 49.8% - 69.4% P_2O_5 , with * - linear hexenes, \Diamond - branched hexenes and \bigtriangleup - total
hexene depletion
Figure 4-3: Reaction progression for the dimerisation of 1-hexene at 200 °C for an acid
strength of 70.3% P_2O_5 , with $*$ - linear hexenes, \diamond - branched hexenes and \triangle - total hexene
depletion
Figure 4-5: Rate of 1-hexene dimerisation for various acid strengths a) 62.5%, b) 72.9%
and - c) 73.7% at 150 °C, with $*$ - linear hexenes, \diamond - branched hexenes and \triangle - total hexene
depletion

List of Tables

Table 2-1: Composition of feed to a catalytic polymerisation unit from Fischer-Tropsch,
thermal cracking and catalytic cracking
Table 2-2: Effect of isobutene on oligomerisation rate and the quality of the hydrogenated
produced fuel 2-4
Table 2-3: Unit conversion between % P_2O_5 and % H_3PO_4 2-11
Table 3-1: SPA C84/3 Properties
Table 3-2: Kinetic experiments completed. 3-5
Table 3-3: Carbon analysis. 3-6
Table 3-4: Groupings of hexene isomers 3-9
Table 3-5: Equilibrium distribution of hexene isomers from RGIBS reactor (Aspen TM). 3-17
Table 3-6: Product spread for GCxGC at different temperatures. 3-23
Table 4-1: Experiments completed where the catalyst was hydrated/dried at various
temperatures
Table 4-2: Experiments completed to investigate the effect of acid strength on the reaction
rate at 200 °C by altering the free acid content
Table 4-3: Kinetic parameters obtained for the dimerisation of 1-hexene over liquid ortho
and pyro phosphoric acid. Where the rate constants are for the various steps given in Figure
3-14, namely k_1 – skeletal isomerisation, k_2 – dimerisation of branched hexenes (DBH) and
k ₃ – the co-dimerisation of linear and branched hexenes (CD)
Table 4-4: Pre-exponential constant and acid strength dependency of rate constants 4-17
Table 5-3: Degree of branching of fuel cut 5-4
Table 5-4: RON of C_7 - C_{10} paraffin dependent on the branching