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Appendix A  

Six component load cell (6clc) 

 

 

 

 

 

 

This appendix is concerned with the development of the six component load cell. It discusses 

the calibration of the uni-axial (tension-compression) load cells, the verification of the 

concept of the 6clc as well as the verification of the model of the 6clc that was created in 

ADAMS/Car. The verification is done by using the analytical equations that were derived. 

The validation of both the analytical and ADAMS/Car model against experimental 

measurements are presented. Paragraph A.1 discusses the calibration of the individual uni-

axial load cells and paragraph A.2 discusses the verification and validation of the physical and 

virtual six component load cell. 

 

A.1. Calibration of uni-axial load cells 
 

The uni-axial load cell forms the basis of the 6clc. The 6clc is formed by connecting six uni-

axial load cells between two parts in such away that all six degrees of freedom between the 

two parts are removed. The uni-axial load cells are orientated such that each uni-axial load 

cell is only in tension or compression. Figure A.1 shows the two parts with the six uni-axial 

load cells connecting them. Figure A.2 shows one of the uni-axial load cells. 

 

 
Figure A.1. Six component load cell  
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Figure A.2. Uni-axial load cell  

 

The uni-axial load cell was designed to be able to handle 5000 kg without yielding and with a 

cross-sectional area that will give good sensitivity for the strain measurements. In order to 

measure the strain two 0°-90° strain gages were placed on opposite sides of the reduced cross-

sectional area of the uni-axial load cell (see Figure A.2). A full bridge configuration was used 

as shown in Figure A.3. This configuration allows for temperature compensation, the 

cancellation of the thermal effect of the lead wires as well as cancelling bending. It is not 

expected that the uni-axial load cells will have any bending imposed on them as they will be 

connected to the two parts in the 6clc via spherical bearings.  

 

 
Figure A.3. Full bridge configuration used in uni-axial load cells (Kyowa, 2011) 
 

The force is obtained from the uni-axial load cell by taking the measured strain (ε) and 

multiplying it by the Young’s Modulus (E) of the material and the cross-sectional area (A) of 

the uni-axial load cell (Eq.{A.1}). The cross-sectional area of each of the uni-axial load cells 

were measured with a micrometer. The cross-sectional areas of each of the uni-axial load cells 

are given in Table A.1, with the diagram in Figure A.4 indicating where Dim 1 and Dim 2 

were measured. Note that the cross-sectional area of uni-axial load cell L1 is not included in 

the table. The measurement was not taken as the strain gages were on the load cell before the 

measurements of the cross-sectional area were taken. 

EAF ε=               {A.1} 

 
Table A.1. Cross-sectional area of the uni-axial load cells 

Uni-axial 

load cell 

Dim 1 

[mm] 
Dim 2 

[mm] 
Cross-sectional area 

[m
2
] 

L2 10.37 10.37 0.00010754 

L3 10.02 10.40 0.00010421 

L4 9.81 9.79 0.00009604 

L5 9.77 9.84 0.00009614 

L6 9.93 9.82 0.00009751 
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L7 9.95 9.90 0.00009851 

L8 9.73 9.76 0.00009496 

L9 9.85 9.86 0.00009712 

L10 9.89 9.86 0.00009752 

L11 10.01 9.89 0.00009900 

L12 9.77 9.77 0.00009545 

L13 9.73 9.75 0.00009487 

 

 
Figure A.4. Cross-sectional area of uni-axial load cell 
 

Before the uni-axial load cells were calibrated the tensile strength of the material used to 

manufacture the uni-axial load cells were measured to make sure that the material used 

conformed to specification. The permitted force that can be applied without the load cell 

yielding was calculated using material data. It is important that the uni-axial load cell is not 

physically deformed as this may cause damage to the strain gages and affect the 

measurements obtained from the uni-axial load cells. The uni-axial load cells are made of 

EN19 steel (condition T). A hardness test was performed on two of the uni-axial load cells 

with four measurements taken on each. The hardness tester used gave the Vickers and 

Rockwell (C-scale) hardness as output. The Vickers harness (HV) values obtained from the 

test were converted to Brinell hardness (HB) by means of the ASTM Standard E 140-02 

(2002). A test load of 294.2N was used with a dwell time of 5s.  

 

The tensile strength was calculated from the Brinell hardness using Equation {A.2} (Callister, 

2003). The results for the hardness test and the calculated tensile strength values are given in 

Table A.2. For sample 1 a mean tensile strength of 1017.7MPa with a standard deviation of 

29.8MPa was obtained and for sample 2 a mean tensile strength of 1116.3MPa with a 

standard deviation of 26.7MPa was obtained. The mean tensile strengths that were obtained 

from the tests for the two samples show good agreement to typical tensile strength values of 

EN19 steel (condition T) (West York Steel, 2009).   

 

HBMPaengthTensileStr ×= 45.3)(             {A.2} 

 

Table A.2. Results of harness tests 

 HV 

(Vickers 

hardness) 

HRC 

(Rockwell 

hardness. C-scale) 

HB 

(Brinell 

hardness) 

Tensile strength 

[MPa] 

Sample 1:     
Measurement 1 304.2 30.2 287.6 992.22 

Measurement 2 306.4 30.5 290 1000.5 

Measurement 3 311.9 31.2 295.4 1019.13 

Measurement 4 323.5 32.6 307 1059.15 

Mean    1017.7 

Standard deviation    29.8 
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 HV 

(Vickers 

hardness) 

HRC 

(Rockwell 

hardness. C-scale) 

HB 

(Brinell 

hardness) 

Tensile strength 

[MPa] 

     

Sample 2:     

Measurement 1 331.6 33.5 315 1086.75 

Measurement 2 338.3 34.2 320.6 1106.07 

Measurement 3 344.8 34.8 325.4 1122.63 

Measurement 4 351.8 35.7 333.3 1149.89 

Mean    1116.3 

Standard deviation    26.7 

 

Each uni-axial load cell is calibrated separately against a reference load cell. The reference 

load cell was calibrated against a DH Budenburg dead-weight tester. The uni-axial load cell is 

placed in series with the reference load cell in a Schenck Hydropulse, as shown in Figure A.5, 

and calibrated.  

 

 
Figure A.5. Experimental setup for calibrating the uni-axial load cells 

 

The calibration of the uni-axial load cells were performed by firstly subjecting all of them to a 

sinusoidal load with an amplitude of 22 300N around a mean of -22 300N and a frequency of 

0.5Hz. They were subjected to ±70 cycles. This was done as it was initially observed that 

when the uni-axial load cell was loaded and unloaded for a few cycles an offset between the 

uni-axial load cell and the reference load cell’s force measurement was present (see Figure 

A.6). This was the case for all the uni-axial load cells. The uni-axial load cells can not be used 

if they are not able to return to the same initial force value after the loading has been removed. 

After investigating this phenomenon it was found that after subjecting them to a number of 

cycles this offset disappeared (see Figure A.7). It was concluded that there might be residual 

stresses left on the surface of the load cell from manufacturing and after a few cycles of 

loading and unloading these residual stresses are relieved. For this reason all the load cells 

were subjected to a cyclic loading in order to relieve these residual stresses. In hindsight it 

might have been beneficial to anneal the load cells before the strain gages were applied in 

order to remove residual stresses. However, the method used seems to effectively relief the 

residual stresses.    
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Figure A.6. Offset present in uni-axial load cell (Uni-axial load cell L13) 
 

 
Figure A.7. Offset absent after cyclic loading (Uni-axial load cell L13) 

 

After the residual stresses were relieved the uni-axial load cells were given a hand generated 

input that ranged from – 39 639N to 19819.6N. This signal was used to calibrate the uni-axial 

load cells. This is also the signal that was used in Figure A.6 and Figure A.7. The uni-axial 

load cells were calibrated by comparing the force calculated from Eq.{A.1} against the force 

measured by the reference load cell. The maximum difference between these two signals is 

then minimized by adjusting the Young’s modulus (E). The calibrated Young’s modulus (E) 

which results in the best correlation between the uni-axial load cell’s and reference load cell’s 

force is given in Table A.3. It should be noted that the calibrated Young’s modulus takes 

effects such as the misalignment of the strain-gages into account. The Young’s modulus are 

adjusted as the value for this parameter is more uncertain in this case than the cross-sectional 

area that was used. Figure A.8 shows the correlation between the calibrated uni-axial load 

cell’s and reference load cell’s force measurements using the calibrated values for the 

Young’s modulus. Similar results were obtained for the other twelve load cells. From these 

results it was concluded that the uni-axial load cells are calibrated and can now be used in the 

6clc. 
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Table A.3. Calibrated Young’s modulus 

Uni-axial load cell Calibrated Young’s modulus (E) 

[GPa] 

L1 207.09 

L2 192 

L3 200.41 

L4 211.54 

L5 211.34 

L6 208.4 

L7 210 

L8 211.5 

L9 211 

L10 210.4 

L12 211 

L13 211.35 

Mean 208 

Standard deviation 5.9 

 

 
Figure A.8. Calibrated uni-axial load cell (L1) compared to reference load cell 

 

A.2. Verification and Validation of the physical and virtual 6clc  
 

Twelve of the calibrated uni-axial load cells from paragraph A.1 is now incorporated into two 

6clcs each using six uni-axial load cells. The two 6clcs will be referred to as the front 6clc and 

the rear 6clc. Figure A.9 shows the axis system that is used for both the front and rear 6clcs. 

All measurements and dimensions are relative to the centre of volume (cv) of the 6clc. The 

verification process will firstly establish whether the concept of the 6clc can indeed work and 

that it can measure the forces between the chassis and the suspension system. Secondly, the 

virtual 6clc created in ADAMS/Car will be verified. Analytical equations will be derived in 

order to verify the concept of the 6clc as well as to verify the ADAMS/Car model. After the 

concept of the 6clc and the ADAMS/Car model have been verified, both the analytical 

equations and the ADAMS/Car model will be validated against experimental measurements. 
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Figure A.9. 6clc axis system  

 

Table A.4 shows the four load cases that were used in the verification and validation process. 

Table A.4 shows the load direction as well as the application point of the applied force 

relative to the cv of the 6clc for each load case.  

 
Table A.4. Load cases used in verification process  

 Load direction Application point Application point 

coordinates 

(Theoretical) 

Load case 1 Vertical 
(negative z-direction) 

Center 
(at the origin of the xy-plane) 

[0, 0, 0.085] 

Load case 2 Vertical 
(negative z-direction) 

Off center 
[0.0475, 0.04, 0.085] 

Load case 3 Lateral 
(y-direction) 

Off center 
[0.035,-0.0175,0.115] 

Load case 4 Longitudinal 
(negative x-direction) 

Off center 
[0.0575,-0.0175, 0.101] 

 

A.2.1. Verification of 6clc  
 

As mentioned, the verification process will establish whether the concept of the 6clc as well 

as whether the virtual 6clc created in ADAMS/Car is correct. This is done by deriving the 

equations which calculates the three forces and three moments due to the force applied to the 

6clc. The reference point for these forces and moments is the centre of volume (cv) of the 

6clc. The three forces and three moments acting at the centre of volume of the 6clc are 

referred to as the equivalent forces and moments. Similarly, a set of equations are derived to 

calculate the equivalent forces and moments using the forces in the uni-axial load cells. The 

results of these two sets of equations are then compared and are expected to give the same 

results for the equivalent forces and moments. The comparison between these two sets of 

equations will indicate whether the 6clc is able to measure the equivalent forces and moments 

correctly and whether the concept of the 6clc is feasible. The equation will also be used to 

verify the virtual 6clc. 

 

A.2.1.1. Derivation of analytical equations 

 

Figure A.10 shows a schematic of the 6clc indicating the position of the applied force which 

is used in the derivation of the equations. The figure also indicates the position and orientation 

of the six uni-axial load cells. The equations are derived by considering the free-body diagram 

of Part 1 in the zy-, zx-, and xy-planes, respectively. Summing the forces in the two directions 
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and the moments about the third direction for each plane, will result in a set of six equations 

from which the equivalent forces and moments can be calculated.  

   

 
Figure A.10. Schematic of 6clc and the six uni-axial load cells it consists of 
 

zy-plane: 

 

Figure A.11 shows the free-body diagram of Part 1 in the zy-plane. Summing the forces in the 

y- and z-directions and the moment about the x-axis gives the following equations: 

 

∑ = :0zF  AzFZZZ =++ 321  

∑ = :0yF  AyFY =  

∑ = :0xM  AyzAzyyZyZYz FdFdZdZdYd −=+− 32 32
 

 
 

Figure A.11. Free body diagram of Part 1 in the zy-plane 

 

zx-plane: 

 

Figure A.12 shows the free-body diagram of Part 1 in the zx-plane. Summing the forces in the 

x- and z-direction and the moment about the y-axis gives the following equations:  

 

∑ = :0zF  AzFZZZ =++ 321  

∑ = :0xF  AxFXX =+ 21  

∑ = :0yM  AzxAxzxZxZxZzX FdFdZdZdZdXXd −=−−++− 32121 2323112
)(  
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Figure A.12. Free body diagram of Part 1 in the zx-plane 
 

xy-plane 

 

Figure A.13 shows the free-body diagram of Part 1 in the xy-plane. Summing the forces in the 

x- and y-direction and the moment about the z-axis gives the following equations:  

 

∑ = :0xF  AxFXX =+ 21  

∑ = :0yF  AyFY =  

∑ = :0zM  AxyAyxYxyXyX FdFdYdXdXd −=++− 21 21
 

 

 
Figure A.13. Free-body diagram of Part 1 in the xy-plane 

 

Combining the forces and moment equations derived from the zy-, zx- and xy-plane the 

following set of equations are obtained: 

 

AxFXX =+ 21  

AyFY =  

AzFZZZ =++ 321  

AyzAzyyZyZYz FdFdZdZdYd −=+− 32 32
 

AzxAxzxZxZxZzX FdFdZdZdZdXXd −=−−++− 32121 2323112
)(  

AxyAyxYxyXyX FdFdYdXdXd −=++− 21 21
 

{A.3} 
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The left hand side of the set of equations in Eq.{A.3} is equal to the equivalent forces and 

moments due to the forces in the uni-axial load cells, whereas, the right hand side is equal to 

the equivalent forces and moments due to the applied force. It is therefore possible to write 

the set of equations into two sets calculating either the equivalent forces and moments from 

the applied force (Eq.{A.4}) or the equivalent forces and moments from the forces in the uni-

axial load cells (Eq.{A.5}). The set of equations in Eq.{A.3} can also be used to calculate the 

forces in the uni-axial load cells due to an applied force (Eq.{A.6}).     

 

Equivalent forces and moments calculated from applied force 

 

In order to calculate the equivalent forces and moments from the applied force, Eq.{A.3} is 

simply rewritten as Eq.{A.4}. The applied force (FA) and it application point (dx, dy, dz) 

relative to the cv is known and the equivalent forces (Fx, Fy, Fz) and moments (Mx, My, Mz) 

can be calculated.  

xy

zx

yz

z

y
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Equivalent forces and moments calculated from the forces in the uni-axial load cells 

 

In order to calculate the equivalent forces and moments from the forces in the uni-axial load 

cells, Eq.{A.3} is simply rewritten as Eq.{A.5 }. The forces in the uni-axial load cells (X1, X2, 

Y, Z1, Z2 and Z3) are known and the equivalent forces (Fx, Fy, Fz) and moments (Mx, My, Mz) 

can be calculated.  
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Calculate force in uni-axial load cells due to applied force  

 

The set of equations in Eq.{A.3} can be written in matrix form bAx = , as shown in 

Eq.{A.6}.  
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Substituting  
yXd 1 = 

yXd 2 = 
yZd 2 =

yZd 3  with 1d  

xYd = 
zXd 12 = 

zYd with 2d  

xZd 1 = 
xZd 23 with 3d   

 

we can rewrite matrix A as follows: 


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The values for d1, d2 and d3 are obtained from the dimensions of the 6clc. Substituting the 

values of d1=0.045m, d2=0.035m and d3=0.0825m into matrix A the determinant of the matrix 

can be calculated. The det(A) = 0.0013 and implies that the system of linear equations has a 

unique solution because det(A) ≠ 0. This implies that Eq.{A.3} rewritten in the form of 

Eq.{A.6} can be used to calculate the forces in the uni-axial load cells due to the applied 

force. 

 

A.2.1.2. Verification of 6clc concept 

 

Comparing the results from Eq.{A.4} and Eq.{A.5} we can verify whether the 6clc can 

indeed measure the equivalent forces and moments correctly. Figure A.14 shows the results 

obtained from Eq.{A.4} and Eq.{A.5} when a force (FA)
1
 is applied to the 6clc. This figure 

shows that Eq.{A.4} and Eq.{A.5} does indeed give the same answers and implies that the 

concept is feasible. It should be noted that in order to get the results in Figure A.14 the force 

in the uni-axial load cells (X1, X2, Y, Z1, Z2 and Z3), used in Eq.{A.5}, was obtained from 

solving Eq.{A.6}. Note that both Eq.{A.4} and Eq.{A.6} uses the applied force (FA) and its 

associated coordinates (dx, dy and dz). This may lead to errors in the equations being disguised 

as the inputs equal the outputs, and vice versa. The second part of the verification procedure 

may help to identify problems with the equations. A model of the 6clc is created in 

ADAMS/Car. The same applied force
1
 used to generate the results in Figure A.14 will be 

applied to the ADAMS/Car model. The reaction forces measured by the ADAMS/Car model 

will then be substituted into Eq.{A.5} in order to calculate the equivalent forces and moments 

that can be compared with the results of Eq.{A.4}. If the comparisons show good correlation 

                                                 
1
 For this example the applied force had the following characteristic: )2sin(200 ftFAx π= N, 

)2sin(150 ftFAy π= N and )2sin(2000 ftFAz π= N. Applied at [0m, 0.001m, 0.085m]. 
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then we will consider the analytical equations and the ADAMS/Car model, of the 6clc, 

verified. The next step will then be to validate the results from the analytical equations and the 

ADAMS/Car model against experimental measurements. 

 

 
Figure A.14. Compare results from Eq.{A.4} and Eq.{A.5} 

 

A.2.1.3. Verification of the 6clc ADAMS/Car model  

 

This paragraph considers the verification of the ADAMS/Car model. The 6clc that is 

modelled in ADAMS/Car consists of:  

• 15 Moving Parts (not including ground) 

• 1 Cylindrical Joint 

• 6 Spherical Joints 

• 6 Translational Joints 

• 6 Constant velocity Joints 

• 1 Fixed Joint 

• 1 Inplane Primitive Joint 

• 7 Motions 

 

The 6clc model has zero degrees of freedom. Figure A.15 shows the ADAMS/Car model of 

the 6clc. The force is applied to the 6clc model via three point-point actuators each 

representing the three components of the applied force. Each component can be given a 

specified force. The 6clc model measures the forces in the uni-axial load cells through the 

translational joints that are used to connect the two bodies representing the uni-axial load 

cells. The two bodies are connected to the two parts of the 6clc via a spherical joint at the one 

end and a constant velocity joint at the other end.     
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Figure A.15. ADAMS/Car model of 6clc 
 

Before the 6clc model is subjected to the load cases that were shown in Table A.4 the 

ADAMS/Car model was analysed with no external force applied to it. The results obtained 

from the analytical equations and the ADAMS/Car model is shown in Table A.5. As expected 

the results of the analytical equations are zero for the force in the uni-axial load cells and for 

the equivalent forces and moments. The forces in the uni-axial load cell in the ADAMS/Car 

models, however, have non-zero values and therefore give non-zero values for the equivalent 

forces and moments. This difference is due to the mass of the two parts not being included in 

the analytical equation, whereas in the ADAMS/Car model the mass was included. It is 

expected that when the 6clc load cell is orientated such that the gravitational field acts in the 

negative z-direction, and has no force applied to it, that X1, X2, Y, Fx, Fy and Mz should be 

zero, but Table A.5 indicates that this is not the case. The non-zero values of these parameters 

are merely a result of the centre of mass of the 6clc not going through the centre of volume. 

The values for the forces in the uni-axial load cells shown in Table A.5 for the ADAMS/Car 

model will be subtracted from the ADAMS/Car measurements for X1, X2, Y, Z1, Z2 and Z3. 

This is done as the measurements of X1, X2, Y, Z1, Z2 and Z3 in the physical 6clc load cell was 

zeroed when under its own mass.  

 
Table A.5. Results from analysis with no load applied to 6clc  

 Analytical 
Eq.{A.4} and Eq.{A.5} 

[N] 

ADAMS/Car model 

[N] 

Forces in uni-axial load cells 

X1 0 1.6439e-007 

X2 0 -2.1334e-007 

Y 0 2.5271e-007 

Z1 0 -42.1146 

Z2 0 -18.147 

Z3 0 -25.0167 

Equivalent  forces 

Fx 0 -4.8946e-008 

Fy 0 2.5271e-007 

Fz 0 -85.2783 
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 Analytical 
Eq.{A.4} and Eq.{A.5} 

[N] 

ADAMS/Car model 

[N] 

Equivalent moments 

Mx 0 -0.30914 

My 0 0.086554 

Mz 0 -8.1529e-009 

 

Using Load case 1, we will check whether cross-sensitivity between the uni-axial load cells in 

the three directions exists. With Load case 1, X1, X2, Y, Fx, Fy and Mz is expected to be zero. 

The results from the analytical equations are indeed zero for X1, X2, Y, Fx, Fy and Mz whereas 

the results from the ADAMS/Car model is not. Table A.6 shows the maximum difference 

between the analytical and ADAMS/Car results.  

 

From the results in Table A.6 it can be seen that as the magnitude of the vertical component of 

the applied force is changed the difference between the analytical and ADAMS/Car results 

become larger. This seems to indicate that there exists a small amount of cross-sensitivity of 

the uni-axial load cells in the different directions. However, the force present in the uni-axial 

load cells due to the cross-sensitivity is very small and will have a negligible effect on the 

accuracy of the 6clc model’s measurements.   

 
Table A.6. Maximum difference between analytical results and ADAMS/Car results (Load case 1) 

 Load case 1  

(Fz = -100N) 
Load case 1  

(Fz = -1000N) 
Load case 1  

(Fz = -10000N) 

Forces in uni-axial load cells 

X1 2.226e-7 2.226e-6 2.226e-5 

X2 3.727e-7 3.727e-6 3.727e-5 

Y 4.673e-7 4.673e-6 4.673e-5 

Z1 3.173e-6 3.173e-6 5.098e-6 

Z2 5.17e-7 4.13e-6 4.595e-5 

Z3 3.304e-5 3.65e-5 7.085e-5 

Equivalent forces 

Fx 1.5e-7 1.5e-6 1.5e-5 

Fy 4.673e-7 4.673e-6 4.673e-5 

Fz 3e-5 3e-5 3e-5 

Equivalent moments 

Mx 1.468e-6 1.664e-6 3.621e-6 

My 3e-6 3e-6 3e-6 

Mz 1.043e-8 1.043e-7 1.043e-6 

 

The analytical equations and the ADAMS/Car model are subjected to load cases 2 to 4 with 

the non-zero components of the applied force having the characteristic shown in Figure A.16. 

It is a ramp input with maximum amplitude of -4000N. The results for the different load cases 

are shown in Table A.7. 
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Figure A.16. Characteristic of the components of the applied force 

 
Table A.7. Maximum difference between analytical results and ADAMS/Car results (Load case 2 to 4) 

 Load case 2 
Fx = 0N 

Fy = 0N 

Fz = -4000N 

Load case 3 
Fx = 0N 

Fy = -4000N 

Fz = 0N 

Load case 4 
Fx = -4000N 

Fy = 0N 

Fz = 0N 

Fx = -4000N 

Fy = -4000N 

Fz = -4000N 

(Same application 

point as Load case 2) 

Forces in uni-axial load cells 

X1 2.158e-6 2.551e-6 3.4e-5 3.47e-5 

X2 8.076e-8 1.416e-5 3.177e-5 4.5e-5 

Y 1.377e-5 4.76e-6 2.612e-5 3.52e-5 

Z1 3.173e-6 3.173e-6 7.2e-6 9.5e-6 

Z2 7.837e-6 6.57e-6 1.2e-5 1.26e-5 

Z3 3.99e-5 3.27e-5 3.77e-5 3.3e-5 

Equivalent forces 

Fx 2.239e-6 1.671e-5 2.29e-6 1.026e-5 

Fy 1.377e-5 4.76e-6 2.612e-5 3.52e-5 

Fz 3e-5 3e-5 3e-5 3e-5 

Equivalent moments 

Mx 1.67e-6 1.65e-6 1.446e-6 1.446e-6 

My 3e-6 3e-6 3e-6 3e-6 

Mz 5.754e-7 6.89e-7 2.05e-6 2.35e-6 

 

From the results shown in Table A.6 and Table A.7 it can be concluded that the ADAMS/Car 

model was constructed correctly and is able to measure the equivalent forces and moments 

applied to the virtual 6clc. The ADAMS/Car model as well as the analytical equations will 

now be validated against experimental results. This is done as comparing the results of the 

two models with one another only verifies that the models have been created correctly, but 

does not indicate whether either model is correct and can measure the force in the uni-axial 

load cells correctly, and infer the equivalent forces and moments. In the following paragraph 

we will discuss the validation of the 6clc models.  

 

A.2.2. Validation of 6clc models 
 

The 6clc ADAMS/Car model has been verified. The next step before the 6clc model can be 

used is to validate it. The validation will consist of qualitatively comparing the measurements 

of the physical 6clc and the “measurements” of the 6clc ADAMS/Car model. The analytical 
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equations will also be compared to the measurements of the physical 6clc measurements. In 

the comparisons the data referred to as the Measured data is obtained from the physical 6clc 

measurements. The forces in the uni-axial load cells (i.e. X1, X2, Y, Z1, Z2 and Z3) are obtained 

by taking the stain measurements of each uni-axial load cell and then using Eq.{A.2} to 

calculate the force. Once the measured force in each of the uni-axial load cells have bean 

calculated Eq.{A.5} is used to calculate the equivalent forces and moments. The Analytical 

data refers to the data obtained by calculating the uni-axial load cell forces and the equivalent 

forces and moments due to the applied force. The forces in the uni-axial load cells are 

calculated using Eq.{A.6} and the equivalent forces and moments are calculated using 

Eq.{A.4}. The last set of data used in the comparisons is the data from the 6clc ADAMS/Car 

model which will be referred to as acar. The uni-axial load cells in the ADAMS/Car model 

was modelled such that the force measured by the uni-axial load cells is already in Newtons. 

Therefore, the uni-axial load cell forces obtained from the ADAMS/Car model can directly be 

substituted into Eq.{A.5} to calculate the equivalent forces and moments.  

 

The experimental setup that was used to obtain the experimental data required for the 

validation process is shown in Figure A.17. An external force is applied to the 6clc via the 

actuator which will be referred to as the applied force. The force is applied to the actuator at a 

known location for the different load cases as was given in Table A.4. The applied force is 

measured by the load cell. The measured applied force is used in the analytical equations as 

well as applied to the ADAMS/Car model. The same load cases are used that was used in the 

verification process (see Table A.4). The validation results of the 6clc models for each of the 

load cases is given in the following paragraphs. 

 

 
Figure A.17. Experimental setup of 6clc for Load case 3 

 

A.2.2.1. Load case 1 and Load case 2 

 

The force in the vertical direction was applied both at the origin of the xy-plane (Load case 1) 

as well as at an off-centre location (Load case 2). The interface between the actuator and the 

6clc was a 32mm round tube that transferred the load to the 6clc. The midpoint of the round 

tube corresponded with the application point given in Table A.4. This assumed that the load, 

applied through the 32mm round tube, will be a perfect point load and that it will act at the 

mid point of the tube at the specified location. However, in the experimental setup it may 

happen that the load is actually applied at some other point within the circular envelope 

formed by the round tube (see Figure A.18). This implies that it may happen that the practical 
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application points differ from the theoretical application points and thus influence the results 

of the equivalent moments and forces calculated by Eq.{A.4}.  

 

 
Figure A.18. Force application for Load case 1 and 2  
 

Figure A.19 shows the comparison of the equivalent forces and moments between the two 

models and the physical 6clc when subjected to Load case 1. From this figure it can be 

observed that the equivalent vertical force measured on the physical 6clc and the two models 

show good agreement. However for the other two forces and all three moments there is not 

good agreement. It is difficult to distinguish between the results from the two models 

(Analytical and acar) in Figure A.19. This is because the results are equal. Figure A.20 and 

Figure A.21 show the correlation of the forces in the six uni-axial load cells. As can be 

expected for this load case the analytical equations and the ADAMS/Car model measures no 

forces in the lateral and longitudinal directions (see Figure A.20). The physical 6clc, however, 

does measure forces in the uni-axial load cells X1, X2 and Y. The forces present in X1, X2 and Y 

of the physical 6clc but which are not measured in the 6clc models, cause the deviation 

observed in the equivalent forces and moments. 

 

From Figure A.19 it would seem that the two models measure the vertical force correctly, 

however, when the forces in the uni-axial load cells in the z direction are viewed (see Figure 

A.21) it can be observed that there is some deviation between the measured and predicted 

forces in the uni-axial load cells.  

 

 
Figure A.19. Comparison of equivalent forces and moments (Load case 1) 
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Figure A.20. Comparison of forces in uni-axial load cells orientated in the longitudinal and lateral direction 

(Load case 1) 

 
Figure A.21. Comparison of forces in uni-axial load cells orientated in vertical direction (Load case 1) 
 

Figure A.22 shows the comparison of the equivalent forces and moments when the 6clc is 

subjected to Load case 2. It can be observed that the predicted equivalent vertical force from 

the two models has good correlation with the measured data. The equivalent moment around 

the x- and y-axis also shows good correlation. Once again the forces in the uni-axial load cells 

measured by the two models in the longitudinal and lateral direction are zero. Similar to the 

results obtained for Load case 1, the results show that the equivalent vertical force has good 

correlation between measured and predicted data, however, this is not true for the forces in the 

uni-axial load cells orientated in the z-direction, especially for Z2. This is shown in Figure 

A.23.  
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Figure A.22. Comparison of equivalent forces and moments (Load case 2) 

 

 
Figure A.23. Comparison of forces in uni-axial load cells orientated in the vertical direction (Load case 2) 
 

A.2.2.2. Load case 3 

 

In this load case the force is applied to the 6clc via a spherical joint and yoke. Figure A.24 

shows the experimental setup and a schematic of the 6clc showing the orientation of the 

applied force in the 6clc’s coordinate system.  

 

                    
Figure A.24. Experimental setup for Load case 3 
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The equivalent lateral force and the moments about the x- and z-axis show good correlation 

between the measured and model data (see Figure A.25). The moment about the z-axis uses 

the forces in the uni-axial load cells X1, X2 and Y. It is interesting to note that the comparison 

of the results from the two models and the measured force in the uni-axial load cell Y shows 

good correlation whereas X1 and X2 do not show good correlation as shown in Figure A.26. 

Even though the models do not give good predictions of X1 and X2, good correlation is still 

obtained for the moment about the z-axis. This is most likely due to the models giving 

accurate measurements for Y and with the forces in Y being much higher than in X1 and X2.  

 

 
Figure A.25. Comparison of equivalent forces and moments (Load case 3) 

 

 
Figure A.26. Comparison of forces in uni-axial load cells orientated in the longitudinal direction (Load case 3) 
 

A.2.2.3. Load case 4 

 

In this load case the force is applied to the side of the yoke, which is attached to the 6clc, 

through the same 32mm tube that was used in Load case 1 and Load case 2. The experimental 

setup and a schematic of the 6clc showing the orientation of the applied force (Fapplied) in the 

6clc’s coordinate system are shown in Figure A.27. Because the loading is applied through 

the 32mm round tube the same effect as described in Load case 1 and 2 can occur here.  

 

 
 
 



S i x  c o m p o n e n t  l o a d  c e l l                                                    A p p e n d i x  A  

 

 

159 

                      
Figure A.27. Experimental setup for Load case 4 
 

The equivalent longitudinal force and the moments about the y- and z-axis show good 

correlation between the measured and the results from the two models, as shown in Figure 

A.28. The moment about the z-axis uses the forces in the uni-axial load cells X1, X2 and Y. 

The uni-axial load cell forces in X1 and X2 shows much better correlation between the 

measured and the models’ results than the uni-axial load cell Y’s forces as shown in Figure 

A.29 Similar to what was observed in Load case 3, the models’ prediction of the equivalent 

moment about the z-axis is good inspite of the deviation in their prediction of the uni-axial 

load cell Y’s force from the measured data. This is due to the good correlation of the models’ 

forces in X1 and X2 and the higher forces present in X1 and X2 compared to the forces in Y.  

 

 
Figure A.28. Comparison of equivalent forces and moments (Load case 4) 

 

 
Figure A.29. Comparison of forces in uni-axial load cell orientated in the longitudinal and lateral direction 

(Load case 4) 
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It was observed in the previous paragraphs that for each load case good correlation was 

obtained for one of the equivalent forces and for two of the equiavlent moments. For the other 

two equivalent forces and moment the analytical equations and ADAMS/Car model’s 

measurements did not correlate well. It was mentioned that in some of the load cases the 

theoretical force application point may not actually coincide with the practical application 

point. This was mainly as a result of how the force was applied to the physical 6clc. This 

possible cause, along with three other possible causes, are listed below. One, or a combination 

of them, might be the cause for the deviation observed: 

• The practical application point may differ from the theoretical application point 

• The applied force may not be purely in one direction but might have another 

orientation,   

• The physical 6clc had some play between the rod end of the uni-axial load cells and 

the bolts, 

• The physical 6clc is not perfectly rigid whereas the models are. 

 

A.2.3. Model refinement 
 

From the validation results shown in paragraph A.2.2 it was concluded that four possible 

causes may be responsible for the deviation between the results of the equivalent forces and 

moments as well as the forces in the uni-axial load cells obtained from the physical 6clc and 

the two models. In this paragraph the two most likely causes will be investigated namely, the 

force orientation and the force application point.   

 

In order to investigate the effect of the force orientation and its application point on the 

results, the orientation of the force as well as its application point will be calculated from the 

experimentally measured forces in the uni-axial load cells. After the orientation of the forces 

and its application point have been calculated from the experimental measurements, it will be 

used in the two models. This should improve the correlation as the physical and virtual 6clc 

should then be subjected to the same conditions. Considering Equation {A.3}, presented here 

for convenience as Eq.{A.7}, the left hand side of the equations contain the components of 

the applied force as well as the coordinates of its application point. The right hand side of the 

equations contain the forces in the uni-axial load cells as well as their location relative to the 

centre of volume.  
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          {A.7} 

 

All the values on the right hand side are known and it should therefore be possible to calculate 

the components and the application point of the applied force from the experimental 

measurements of the forces in the uni-axial load cells. The set of equations in Eq.{A.7} are 

unfortunately not linear independent. However, dividing the set of equations in Eq.{A.7} into 

two sets of equations consisting of the three forces and the three moment equations we can 
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solve for the three components of the applied force (FAx, FAy, FAz) as well as its coordinates 

(dx, dy, dz) as discussed in the following two paragraphs. Paragraph A.2.3.1 discusses the 

results when the experimentally calculated orientation of the applied force is used in the two 

models and paragraph A.2.3.2 discusses the results when the experimentally calculated 

application point is used. 

 

A.2.3.1. Orientation of applied force 

 

The components of the applied force are calculated from the experimental force 

measurements in the uni-axial load cells (X1, X2, Y, Z1, Z2 and Z3) using the three force 

equations in Eq.{A.7} shown here as Eq.{A.8}. 
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The three components of the applied force, and therefore the orientation of the applied force, 

can easily be calculated using Eq.{A.8}. Using the experimentally calculated applied force 

orientation for Load case 1 in the analytical equations and the ADAMS/Car model gives the 

results shown in Figure A.30. An improvement in the correlation of the longitudinal and 

lateral equivalent forces can be seen from Figure A.30. The equivalent moments do not 

however show any improvement in the correlation between the data of the two models and the 

measured data. Unlike the results for Load case 1 shown in Figure A.30, the correlation 

between the results for Load case 3 shows great improvements for both the equivalent forces 

as well as the equivalent moments (see Figure A.31).  

 

 
Figure A.30. Comparison of equivalent forces and moments (Load case 1 – Experimental loading) 
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Figure A.31. Comparison of equivalent forces and moments (Load case 3 – Experimental loading) 

 

The possibility that the orientation of the applied force between the physical 6clc and the two 

models differ was investigated. The components of the applied force were calculated from the 

experimental measurements of the force in the uni-axial load cells in the physical 6clc and 

were used as input to the analytical equations and the ADAMS/Car model. This showed 

improvement in the correlation of the equivalent forces for both Load case 1 and Load case 3. 

Improvement in the correlation of the equivalent moments was obtained only for Load case 3. 

The fact that good correlation is obtained for the equivalent forces but not for the equivalent 

moments seem to indicate that there might be an error in the application point of the applied 

force. This is investigated in the next paragraph.  

 

A.2.3.2. Application point of applied force 

 

In the previous paragraph the orientation of the applied force was calculated from 

experimental measurements. When this force orientation was used in the two models an 

improvement in the comparisons was observed. The effect of the application point on the 

correlation is now checked by calculating the application point from the experimental 

measurements and using these coordinates in the two models. The application point will be 

calculated using the three moment equations in Eq.{A.7} shown here as Eq.{A.9}. The three 

components of the applied force (FAx, FAy, FAz) in Eq.{A.9} can be calculated using Eq.{A.8}. 

Eq.{A.9} therefore results in a set of three linear equations with three unknowns. 
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)()(            {A.9} 

 

The three moment equations in Eq.{A.9} can be written in the form Ax = b as shown in 

Eq.{A.10}. As stated the variables in matrix A can be calculated from Eq.{A.8} and all 

variables in vector b is known as they have been measured experimentally. The determinant 

of matrix A is calculated to be zero (det(A) = 0). This implies that matrix A is singular and it is 

not possible to invert it and we can therefore not solve for the application point coordinates dx, 

dy and dz using Eq.{A.10}. If, however, either dx, dy, or dz is known it is possible to calculate 

the other two variables using the set of equations in Eq.{A.9}. 
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Considering the way the force is applied to the 6clc in the four load cases the following can be 

concluded. For Load case 1 and 2 dz is well defined whereas dx and dy is not as it may be 

anywhere within the envelope discussed in paragraph A.2.2.1. The same situation is present in 

Load case 4 where dx is assumed to be well defined whereas dy and dz is not as they may be 

anywhere within the envelope created by the 32mm tube. For Load case 3 the application 

point is supposed to be well defined in dx, dy and dz as the actuator was attached to the 6clc via 

a spherical joint and yoke. This however may not guarantee that the practical application point 

coincides exactly with the theoretical point but it is assumed that the theoretical and practical 

application points for Load case 3 coincide.  

 

When it is assumed that dz is well defined for Load case 1 and Load case 2, dy and dx can be 

calculated using Eq.{A.9} from which the following equations are obtained for dy and dx:  
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FAz is calculated from Eq.{A.8}. The remaining moment equation can be used as a check, as 

dx and dy substituted into Equation {A.11}, should be equal to zero: 

( ) 02211 =++−−− YdXdXdFdFd
xyyxy YXXAyAx          {A.11} 

 

For Load case 4 it is assumed that dx is well defined and dy and dz can be calculated using 

Eq.{A.9} from which the following equations are obtained for dy and dz:  
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FAx is calculated from Eq.{A.8}. The remaining moment equation can be used as a check, as 

dy and dz substituted into Equation {A.12}, should be equal to zero: 

( ) 03322 =+−−− ZdZdYdFdFd
yyyz ZzzyAzAy          {A.12} 

 

Table A.8 shows the application point calculated from the experimental measurements for 

Load cases 1, 2 and 4 calculated using the equations above. It also shows whether the 

adjustment falls within the envelope as well as the results from the test equations (Eq.{A.11} 

and Eq.{A.12}). The reader should note that the results of the test equations are given as a 

mean and a standard deviation because the application point may shift within the envelope as 

the force is applied and removed. 
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Table A.8. Application point   

Load 

case 

Application point: 

Theoretical 

Application point: 

Calculated from 

measurements 

Adjustment 

 

Test equations 

mean 
[N.m] 

standard 

deviation 

[N.m] 

1 [0, 0, 0.085] [-0.0057,-0.00108,0.085] 

 
5.8mm < 16mm ⇒ 

within envelope 

9.85 10.25 

2 [0.0475, 0.04, 0.085] [0.0421,0.0345,0.085] 

 
7.7mm < 16mm ⇒ 

within envelope 

9.85 10.18 

4 [0.0575,-0.0175, 0.101] [0.0575,-0.0261,0.0955] 

 

10.2mm < 16mm 

⇒ within envelope  

-83.6 67.5 

Note: The coordinates shown in orange are the coordinates that are assumed to be known for the specific load 

case 

 

From the results in Table A.8 it can be seen that the application point calculated from the 

experimental measurements falls within the envelope created by the 32mm tubing. The test 

equations are not satisfied with Load case 4 having the greatest deviation. This indicates that 

the application point that is calculated changes, within the envelope, as the force is applied. 

Although the test equation is not satisfied, the application point calculated from the 

experimental measurements will be used as they still fall within the envelope. The results for 

the two models, when using the experimentally calculated applied force orientation and 

application point, are shown next for all four load cases. 

 

Load case 1 and 2 

 

From Figure A.32 and Figure A.33 it can be observed that there is an improvement in the 

correlation of the equivalent moments as well as in the forces in the uni-axial load cells when 

the experimentally calculated application is used in the models. However, the correlation of 

the forces in the uni-axial load cells X1 and X2 are still not good. This is true for both Load 

case 1 and 2 (see Figure A.33 and Figure A.35). Similarly, the correlation of the equivalent 

moment about the z-axis is also not good for both Load case 1 and 2 (see Figure A.32 and 

Figure A.34). Except for the correlation of the two uni-axial load cell forces X1 and X2 and the 

equivalent moment about the z-axis, good correlation is obtained for all the other equivalent 

forces and moments and forces in the uni-axial load cells.  

   

 
Figure A.32. Comparison of equivalent forces and moments (Load case 1 – Experimental loading and 

application point) 
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Figure A.33. Comparison of forces in uni-axial load cells orientated in the longitudinal and vertical direction 

(Load case 1 – Experimental loading and application point) 

 

 
Figure A.34. Comparison of equivalent forces and moments (Load case 2 – Experimental loading and 

application point) 

 

 
Figure A.35. Comparison of forces in uni-axial load cells orientated in the longitudinal and vertical direction 

(Load case 2 – Experimental loading and application point) 
 

Load case 3 

 

Figure A.36 and Figure A.37 show the correlation between the models and the measured data 

when the experimentally calculated applied force orientation is applied to the two models. 
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The application point is not calculated from the experimental measurements as the loading 

was applied via a spherical joint and yoke. It was therefore assumed that the practical 

application point should be in close agreement with the theoretical application point. 

Therefore the theoretical application point is used for Load case 3. The equivalent forces 

results show good correlation. The forces in the uni-axial load cells X1, X2 and Z1 do not show 

good correlation which leads to the deviations in the correlation of the equivalent moment 

about the y-axis. 

 

 
Figure A.36. Comparison of equivalent forces and moments (Load case 3 – Experimental loading and 

application point) 

 

 
Figure A.37. Comparison of forces in uni-axial load cells orientated in the longitudinal and vertical direction 

(Load case 3 – Experimental loading and application point) 

 

Load case 4 

 

Figure A.38 and Figure A.39 show the correlation between the models and the measured data 

for Load case 4. The equivalent force results show good correlation. The forces in the uni-

axial load cells Z2 and Z3 do not show good correlation which leads to the deviations in the 

correlation of the equivalent moment about the x-axis.  
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Figure A.38. Comparison of equivalent forces and moments (Load case 4 – Experimental loading and 

application point) 
 

 
Figure A.39. Comparison of forces in uni-axial load cells orientated in the longitudinal and vertical direction 

(Load case 4 – Experimental loading and application point)  
 

The force measurements from the two models were improved when the applied force and the 

application point, calculated from the experimental measurements, were used in the models. 

Good correlation is obtained between the physical 6clc and the two models’ equivalent forces 

for all the load cases. The correlation for the equivalent moments are good but there are still 

some equivalent moments from the models that deviate from the experimental data. Possible 

causes for this may be due to the application point still not being exactly the same as the 

application point in the experimental setup.  

 

A.2.4. Validation results for the rear 6clc  

 

Paragraph A.2.2 and paragraph A.2.3 showed the validation results using the experimental 

measurements taken on the front 6clc. The two models will now be validated using the 

experimental measurements taken on the rear 6clc. Obtaining good results between the two 

models’ “measurements”, using the experimental measurements taken on the rear (physical) 

6clc, and the experimental measurements will imply that the ADAMS/Car model can be used 

to model both the front and rear physical 6clcs.  

 

The results for the four load cases (see Table A.4) are given in the following three paragraphs. 

The same ADAMS/Car model is used for the front and rear 6clc, the only difference is in the 

 
 
 



A p p e n d i x  A                                                    S i x  c o m p o n e n t  l o a d  c e l l  

 

 

168 

practical application point that is used in the model. The experimentally calculated force 

orientation and application point are used in the two models. Table A.9 shows the application 

points used for the four load cases. For all the load cases, except for Load case 3, the 

experimentally calculated application point is used. 

 
Table A.9. Application point (Rear 6clc) 

Load 

case 

Application point: 

Theoretical 

Application point: 

Calculated from 

measurements 

Adjustment 

 

Test equations 

mean 

[N.m] 

standard 

deviation 
[N.m] 

1 [0, 0, 0.085] [-0.00465, 0.00327, 0.085] 

 
5.7mm < 16mm ⇒ 

within envelope 

-10.32 10.29 

2 [0.0475, 0.04, 0.085] [0.0472, 0.0356, 0.085] 

 
4.4mm < 16mm ⇒ 

within envelope 

-2.63 2.73 

3 [0.035, -0.0175, 0.115] 

 

N/A N/A N/A N/A 

4 [0.0575,-0.0175, 0.101] [0.0575,-0.0133,0.0951] 

 

7.2mm < 16mm 

⇒ within envelope  

22.68 26.12 

Note: The coordinates shown in orange are the coordinates that are assumed to be known in the specific load 

case 
 

Load case 1 and Load case 2 

 

Figure A.40 and Figure A.41 show the results for Load case 1 and Figure A.42 and Figure 

A.43 show the results for Load case 2. The results for both load cases show that the 

correlation between the models’ and the physical 6clc’s measured forces in the uni-axial load 

cells X1 and X2 is not good. This causes the correlation of the equivalent moment about the z-

axis also not to be good. This is similar to the results obtained in paragraph A.2.3.2. 

 

 
Figure A.40. Comparison of equivalent forces and moments (Load case 1 - Rear 6clc – Experimental loading 

and application point) 
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Figure A.41. Comparison of forces in uni-axial load cells orientated in the longitudinal and vertical direction 

(Load case 1 - Rear 6clc – Experimental loading and application point) 

 

 
Figure A.42. Comparison of equivalent forces and moments (Load case 2 - Rear 6clc – Experimental loading 

and application point) 

 

 
Figure A.43. Comparison of forces in uni-axial load cells orientated in the longitudinal and vertical direction 

(Load cell 2 - Rear 6clc – Experimental loading and application point) 
 

Load case 3 

 

The correlation of the forces in the uni-axial load cells X1, X2 and Z1 is not as good as the 

correlation for the other uni-axial load cell forces (see Figure A.44). Except for the equivalent 
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moment about the y-axis, the other two equivalent moments and all three equivalent forces 

show good correlation (see Figure A.45). 
 

 
Figure A.44. Comparison of the forces in the uni-axial load cells orientated in the longitudinal and vertical 

direction (Load case 3 - Rear 6clc – Experimental loading and application point) 
 

 

 
Figure A.45. Comparison of equivalent forces and moments (Load case 3 - Rear 6clc – Experimental loading 

and application point) 

 

Load case 4 

 

Figure A.46 and Figure A.47 show the results for Load case 4. Except for the forces in the 

uni-acial load cells Z2 and Z3 all the other uni-axial load cell forces show good correlation. 

The discrepancy between Z2 and Z3 causes the equivalent moment about the x-axis to deviate 

from the measured data. The other two equivalent moments and all three equivalent forces 

show good correlation.  

 

 
 
 



S i x  c o m p o n e n t  l o a d  c e l l                                                    A p p e n d i x  A  

 

 

171 

 
Figure A.46. Comparison of equivalent forces and moments (Load case 4 - Rear 6clc – Experimental loading 

and application point) 
 

 
Figure A.47. Comparison of forces in uni-axial load cell orientated in the longitudinal and vertical direction 

(Load case 4 - Rear 6clc – Experimental loading and application point) 

 

The validation results for the two models using the experimental measurements taken on the 

rear 6clc showed similar trends and correlation to that obtained when the measurements on 

the front (physical) 6clc were used. 

 

A.3. Conclusion 
 

Twelve uni-axial load cells were calibrated and integrated into two six component load cells. 

The analytical equations for the 6clc were derived which calculates the equivalent forces and 

moments acting on the load cell. Using the analytical equations the feasibility of the 6clc 

concept was verified. An ADAMS/Car model was created to represent the 6clc and was also 

verified using the analytical equations. The analytical equations and the ADAMS/Car model 

were validated against experimental measurements. The results showed good correlation 

between the two models and the measured data when the experimentally calculated force 

orientation and application point were used in the two models. Good correlation was obtained 

for all the equivalent forces for all four load cases. The correlation of the equivalent moments 

tends to have one of the equivalent moments that do not have good correlation. This may be 

due to the application point between the physical 6clc and the model not being exactly the 

same.  
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From the verification and validation results it can be concluded that both the physical as well 

as the virtual 6clc can be used to measure the equivalent forces and moments. It is however 

suggested that a more rigorous validation process is undertaken which concentrates on having 

a experimental setup which enables better control over the orientation and application point of 

the applied force. 
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Appendix B  

Theoretical stiffness of the multi-leaf spring 

 

 

 

 

 

 

This appendix investigates the use of beam theory to calculate the two stiffness regimes 

observed on the force-displacement characteristic of the multi-leaf spring. The two stiffness 

regimes are associated with the solid beam and layered beam behaviour discussed in 

paragraph 2.2 of Chapter 3. The appendix will first present the equations that can be used to 

calculate the stiffness of the two regimes. The two stiffness regimes of the multi-leaf spring 

are calculated using two methods, 1) the principle of superposition from beam theory (Gere, 

2004) and, 2) the equations in the SAE Spring Design Manual (1996).  

 

B.1. Calculating the theoretical stiffness 
 

The stiffness of the two regimes of the multi-leaf spring is calculated by dividing the multi-

leaf spring, shown in Figure B.1, into two cantilevers. It is assumed that the clamping in the 

clamped section is perfect meaning that this section acts like a solid beam without the 

possibility of slip between the individual blades. This result in the boundary condition shown 

in Figure B.1 and divides the leaf spring in a front and rear cantilever, The stiffness of the 

multi-leaf spring is calculated by first calculating the stiffness of the two cantilevers and then 

combining the cantilever stiffnesses to obtain the equivalent stiffness which represents the 

multi-leaf spring stiffness. As mentioned, two methods will be used to calculate the stiffness 

of the cantilever beams. The method of superposition, presented in paragraph B.1.1, is able to 

calculate the stiffness of both stiffness regimes whereas the second method using the 

equations in the SAE spring design manual (1996) is only able to calculate the stiffness of the 

regime associated with the layered beam behaviour.   

 

 
Figure B.1. Multi-leaf spring dimensions 
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Figure B.1 shows the dimensions for the multi-leaf spring. The lengths L1 to L5 represent the 

actual length and not the total length as the total length of each section is not in complete 

contact with the next blade. This is shown in Figure B.2. 
 

 
Figure B.2. Contact between blades at blade ends 
 

B.1.1. Principle of superposition  
 

The theoretical stiffness of the spring’s two stiffness regimes is calculated using the principle 

of superposition (Gere, 2004). The principle of superposition is used as the cantilever beam is 

non-prismatic. As mentioned the multi-leaf spring is divided into two cantilever beams (see 

Figure B.1), a front cantilever and rear cantilever. The stiffness of the cantilevers is calculated 

as follows. The cantilever is divided into prismatic sections (see Figure B.3). Calculating the 

deflection of each section and summing them gives the total deflection at G. Equation {B.1} 

shows the calculation of the deflection at G. 

 
Figure B.3. Cantilever beam divided into sections with uniform cross section 
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The deflections Bδ , '
2C

δ , '
2D

δ , '
2E

δ and '
2F

δ are calculated using the equation given forδ and with 

the correct values for P, L, M, E and I substituted into the equation for each section. Similarly, 

the angles of rotation Bθ , Cθ , Dθ , Eθ  and Fθ  are calculated using the equation given forθ  

and with the correct values for P, L, M, E and I substituted into the equation for each section. 

Substituting these equations into Equation {B.1}, and after some rearrangement, we obtain 

Equation {B.2} which is the stiffness (k) of the non-prismatic cantilever. Note that in this 

equation the following shorthand notation is used: l62 = l6 + l5 + l4 + l3 + l2 etc. 
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           {B.2} 

 

As discussed in paragraph 2.2 of Chapter 3 we expect the multi-leaf spring to have two 

stiffness regimes in its force-deflection characteristic. To calculate the stiffness of the two 

regimes the area moments of inertias (I1-I6) are calculated in one of two ways. For the 

instance were the beam is initially loaded or unloaded we assume that there is no slip between 

the blades (see paragraph 2.2 of Chapter 3). This causes the multi-leaf spring to act as a single 

non-prismatic beam (i.e. the spring is machined out of a solid billet and not made of stacked 

blades). For this instance the area moment of inertias are calculated as follows: 

 

Multi-leaf spring considered as solid beam 

12

3

t
i

bh
I =  

with b = width of blade 

 h = thickness of individual blade 

 ht = h x number of blades in section i 

 i = section 1, 2, …, 6 

 

The other instance is when there is slip between the blades and the multi-leaf spring acts as a 

layered beam. In this case the blades are assumed to have no friction between them. The 

calculations of the area moments of inertias are as follows: 

 

Multi-leaf spring considered as layered beam 

       
12

3
bhnol

I i
i

×
=  

with b = width of blade 

 h = thickness of individual blade 

i = section 1, 2, …, 6 

noli = number of blades in section i 

 

Equation {B.2} was derived for an eight blade multi-leaf spring with three full-length blades 

as indicated in Figure B.3. Table B.1 gives the general equations for the calculation of the 

theoretical spring stiffness of a leaf spring with a prismatic and non-prismatic cross-section. A 

leaf spring with a prismatic cross-section will for example consist of a single full length blade. 

A leaf spring with a non-prismatic cross-section will obviously consist of full length and non-

full length blades.  
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Note that the stiffness Equation {B.2}, and the equations given in table B.1, assume that the 

initial rotation of the cantilever beam is zero.  

 
Table B.1. Equation for calculating stiffness of prismatic and non-prismatic cantilever beams 

Prismatic cantilever 

Number of sections,  

n = 1 
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B.1.2. SAE spring design manual 
 

The SAE Spring Design Manual (1996) gives the following equation for the stiffness of a 

uniform strength cantilever beam: 

SF
l

IE
k .

2
3

∑
=              {B.3} 

 

with  E - Young’s modules 

 l - either for front cantilever (lf) or rear cantilever (lr) 

SF - Stiffening factor. According to SAE Spring Design Manual (1996), for truck 

springs with untapered leaf ends and three full length blades SF = 1.25 

ΣI - total moment of inertia  

 

This equation can only be used to calculate the stiffness of the beam when it is considered to 

be behaving as a layered beam, in other words for the condition were the individual blades are 

able to move relative to one another.  
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B.1.3. Calculating equivalent spring stiffness 
 

In paragraph B.1.1 and B.1.2 we presented equations for the calculation of the stiffness of a 

cantilever beam. Seeing that the front and rear cantilever beam is in parallel the equivalent 

stiffness can by calculated by summing the stiffness of the front (ka) and rear (kb) cantilever 

beams: 

baeq kkk +=               {B.4} 

 

 The SAE spring design manual (1996) suggests using the following equation to combine the 

stiffnesses of the front and rear cantilevers: 

22

2

bkak

Lkk
k

ba

ba
eq

+
=              {B.5} 

 

The difference between Equation {B.4} and Eq.{B.5} will be shown by applying it to the two  

simple beams shown in Figure B.4. The figure shows two simply supported beams, one 

loaded symmetrically and the other one asymmetrically. Both beams are divided into a front 

and rear cantilever beam. In Figure B.4 the front cantilever is indicated in red and the rear 

cantilever in black. The clamped section is assumed to be infinitesimally small. The angle θ 

represent the initial angle of rotation of the two cantilever beams. For a symmetric loading of 

the beam the initial angle of the cantilevers are zero, whereas for a asymmetric load case the 

initial angle of rotation of the two cantilever beams is non-zero. 

 

 
Figure B.4. Initial angle of rotation for symmetric and asymmetric loading 

 

The stiffness of the two simple beams given in Figure B.4 will be calculated using the 

analytical equations for a simple beam. This will then be compared to the stiffness of the two 

beams that are calculated by dividing the simply supported beam into two cantilevers and then 

using Eq.{B.4} and Eq.{B.5}, respectively, to calculate the equivalent stiffness of the beam.  
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B.1.3.1. Symmetrical loading 
 

The stiffness of the symmetrically loaded simple beam can be calculated from Equation 

{B.6}. The equation for the deflection (δ) is at the point where the force is applied (Gere, 

2004). 

EI

FLL

48

3

=δ  

3

48

LL

EI
k =   [N/m]      {B.6} 

 

The stiffness of the left and right cantilever beams are calculated using the equation given in 

Table B.1 for the prismatic cantilever beam. The calculation of the stiffness of the front and 

rear cantilever beams is given below:  
 
Left cantilever Right cantilever 

  
The stiffness is calculated using the formulae 

for the prismatic beam given in Table B.1: 

 

3

24

L

a
L

EI
k =  

The stiffness is calculated using the formulae 

for the prismatic beam given in Table B.1: 

 

3

24

L

b
L

EI
k =  

 
Using Eq.{B.4} to combine the stiffness of the two cantilevers we obtain the following 

equivalent stiffness: 

3

33

48

2424

L

LL

baeq

L

EI

L

EI

L

EI

kkk

=

+=

+=

 

 

Using Eq.{B.5} to obtain the equivalent stiffness we get: 

3

22

2

48

L

EI

bkak

Lkk
k

ba

ba

=

+
=

 

 

Using either Eq.{B.4} or Eq.{B.5} we obtain the same stiffness as was calculated by the 

analytical equation for the stiffness of the simply supported beam with symmetric loading. 

The next paragraph will look at the same calculations but now applied to a simply supported 

beam with asymmetric loading. 
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B.1.3.2. Asymmetrical loading  

 

The stiffness of the asymmetrically loaded beam (shown in Figure B.4) can be calculated 

from Equation {B.7}. The equation for the deflection (υ) is at the point where the force is 

applied (Gere, 2004). It is assumed that ba ≥ . 

( )222

6
abL

EIL

Pba
L

L

−−=υ                                         {B.7} 

( )222

6

abLba

EIL
k

L

L

−−
=              {B.8} 

 

Before the stiffness of the front and rear cantilever beams is calculated, the reaction forces (Ra 

and Rb) of the simply supported beam are calculated. The following two equations are 

obtained by summing all the forces in the vertical direction and summing the moments about 

the point where the force F is applied.  

∑
∑

=−=

=+=

0:0

:0

bac

baz

bRaRM

FRRF
 

 

Solving these two equations simultaneously by multiplying the force equation with a and 

subtracting the moment equation from the new force equation we obtain: 

L

b
L

aF
R =  

 

Substituting Fb into the original force equation we obtain: 

L

a
L

bF
R =  

 

Now that the two reaction forces (Ra and Rb) are known, the simple beam will be divided into 

two cantilever beams and their stiffnesses calculated. As was shown in Figure B.4 the point 

where the force F is applied will serve as the point for dividing the simple beam into two 

cantilevers. In calculating the stiffness of the two cantilever beams the slope of the beam at 

the force application point is required to calculate the correct deflection of each cantilever and 

infer the stiffness. Figure B.5 shows the calculation of the deflection at the end points of the 

simply supported beam (which are also the ends of the two cantilever beams) by using 

superposition. Figure B.5 shows that the deflection of the simply supported beam can be 

calculated by assuming that the two cantilevers have a zero initial angle of rotation. The 

deflection of the two cantilevers is calculated with the deflection, due to the angle of rotation 

of the undeformed cantilevers, added to obtain the deflection of the simply supported beam.  
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Figure B.5. Decomposition of deflection of simple beam 

 

The deflection of the cantilevers, with the initial angle of rotation set to zero, is calculated 

with the deflection equation for a cantilever beam which was used to obtain the stiffness of 

the cantilever beam in Eq.{B.6}. The slope at the point of force application of the simple 

beam can be calculated with the following equation (Gere, 2004): 

( )222'
3

6
abL

EIL

Fb
L

L

F −−−=υ  

 

From this equation the angle of rotation can be calculated as '1tan Fυθ −
= . The stiffness of the 

two cantilevers using the method mentioned in Figure B.5 is shown below.  

 
 

Left cantilever 
 

Right cantilever 
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Deflection: 

θ
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Stiffness: 
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Deflection: 
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Stiffness: 
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The stiffness of the front and rear cantilever beam calculated above can now be used in either 

Eq.{B.4} and Eq.{B.5} to calculate the equivalent beam stiffness. This equivalent beam 

stiffness can then be compared to the stiffness calculated from the Eq.{B.8}. In order to 

evaluate and compare the results from Eq.{B.4}, Eq.{B.5} and Eq.{B.8 }, the following 

values for the parameters in these equations are used: 

 a = 0.7m 

 b = 0.3m 

 LL = 1m 

F = 1000N 

E = 207 x 10
9

 Pa 

I  = 1.7 x 10
-8

 m
4
 

 

Table B.2 shows the results obtained from Eq.{B.4}, Eq.{B.5} and Eq.{B.8}. From these 

results it can be seen that the deflection calculated from the two cantilevers are equal to the 

deflection calculated from the simple beam Equation {B.7}. Similarly, the stiffness calculated 

using Equation {B.4} and Eq.{B.5} give the same answer as was calculated for the simple 

beam from Equation {B.8}.  

 
Table B.2. Results from two cantilevers compared with results from simply supported beam  

 Deflection [m] Stiffness [kN/m] 

Simple beam 

 

0.004177 Using Eq.{B.8} 

239.4 

Two cantilever beams 
0.004177 

( ba δδ = ) 

Using Eq.{B.4} 

239.4 

Using Eq.{B.5} 

239.4 

 

B.1.3.3. Conclusion  

 

From the results obtained for the symmetric and asymmetric loaded simply supported beam it 

seems that the method of dividing the simply supported beam into two cantilevers, calculating 

their stiffness and then combining it with either Eq.{B.4} and Eq.{B.5} gives the same results 

as that calculated from the stiffness equation for the simply supported beam. However, it was 
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assumed at the beginning of the analysis that the clamped length is infinitesimally small. 

When the clamped length becomes longer the calculation of the slope of the beam may 

become increasingly more inaccurate as it deviates from the analytical deflection shapes of 

the simply supported beam. Therefore, it may become difficult to calculate the initial angle of 

rotation of the cantilever beams accurately. Not being able to include the initial angle of 

rotation in the calculation of the stiffness of the two cantilevers will lead to errors in the 

stiffness calculated. The following paragraph investigates the effect of the initial angle on the 

results of the stiffness calculations and how with the use of Eq.{B.5} this problem is 

circumvented.  

 

B.1.3.4. Neglecting the initial angle of the cantilevers 
 

With a longer clamp section the analytical equation for calculating the slope of the simply 

supported beam may become inaccurate. This implies that it may become difficult to calculate 

the initial angle of rotation of the cantilever beams and therefore make it difficult to calculate 

the stiffness accurately. The equations for calculating the stiffness of the two cantilevers, 

without including the initial angle of rotation, are given in Table B.3. The calculation of the 

deflection only includes the deflection due to the deformed cantilever with an initial angle of 

rotation set to zero. It neglects the second part of the deflection, the deflection due to the 

initial angle of rotation of the cantilever, which was discussion in Figure B.5. 
 

Table B.3. Equations for calculating stiffness of cantilevers (Neglecting initial angle of rotation) 
 

Left cantilever 
 

Right cantilever 

  
 

Deflection: 

L

a
a

EIL

bFa

EI

aR

33

33

==δ  

 

Stiffness: 

3

3

a

EIR
k

a

a
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Deflection: 

l

b
b

EIL

aFb

EI

bR

33
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==δ  

 

Stiffness: 

3

3

b

EIR
k

b

b
b ==

δ
 

 

From the equation given in Table B.3 it is clear that the deflection calculated for the two 

cantilevers will not be equal. The two cantilevers that are used to represent the simply 

supported beam are in parallel and should therefore experience the same deflection. Therefore 

from the results of the deflections it is clear that the exclusion of the initial angle of rotation of 
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the cantilever beams causes the incorrect calculation of the deflection. It is reasonable to 

expect that when the equivalent stiffness is calculated with either Eq.{B.4} and Eq.{B.5} that 

the incorrect simply supported beam stiffness will be obtained. Again Eq.{B.4}, Eq.{B.5} and 

Eq.{B.8} are evaluated and compared but with Eq.{B.4} and Eq.{B.5} using the front and 

rear cantilever stiffness calculated with the initial angle of rotation neglected. The equations 

are evaluated using the same values for the parameters as was used in paragraph B.1.3.2. The 

results are given in Table B.4. 

 
Table B.4. Results from two cantilevers (initial angle of rotation neglected) compared with results from simply 

supported beam  

 Deflection [m] Stiffness [kN/m] 

Simple beam 

 

0.004177 Using Eq.{B.8} 

239.4 

Two cantilever beams 

00179.0

009747.0

=

=

b

a

δ

δ
 

Using Eq.{B.4} 

421.8 

Using Eq.{B.5} 

239.4 

 

As expected the deflection of the two cantilevers differs, however, even though the deflection 

of the two cantilever beams is incorrect, the correct stiffness is obtained for the simple beam 

when using Eq.{B.5} to calculate the equivalent stiffness.  

 

B.1.4. Validation of theoretical stiffness calculation 
 

In paragraph B.1.1 and B.1.2 equations for the calculation of the stiffness of a cantilever beam 

were presented. It was shown that the stiffness of a simply supported beam can be calculated 

by dividing the beam into two cantilever beams, calculating their stiffness and using Eq.{B.5} 

to calculate the equivalent stiffness. This method was shown to work for a symmetrically 

loaded as well as asymmetrically loaded simply supported beam. This method, with the use of 

Eq.{B.5}, does not require that the initial angles of rotations of the two cantilever beams be 

included. This makes the method useful when considering multi-leaf spring which have large 

clamped section and therefore may cause difficulties in calculating the slope of the multi-leaf 

spring accurately with analytical equations. The main reason for not being able to accurately 

calculate the slope of the multi-leaf spring is that for certain configurations of the leaf spring 

(especially concerning the clamped section length) it deviates from the simply supported 

beam’s deflection shape which is used to approximate the multi-leaf spring.  

 

The method will now be used to calculate the stiffnesses of the two regimes observed in the 

force-displacement characteristics of the multi-leaf spring considered in this study. The 

method of superposition and the SAE spring design manual (1996) is used to calculate the 

stiffness of the regime associated with the layered beam behaviour. The stiffness of the 

regime associated with the solid beam behaviour is calculated only with the method of 

superposition. In order to calculate the theoretical stiffness of the multi-leaf spring, the leaf 

spring is divided into two cantilever beams as was shown in Figure B.1. The stiffness of the 

two cantilevers are calculated, for both the layered and solid beam states, and combined into 

the multi-leaf spring stiffness for the layered and solid beam states using Eq.{B.5}.  

  

Figure B.6 shows the correlation between the theoretically calculated stiffness and the 

experimentally measured force-displacement characteristic of the multi-leaf spring. Note that 
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the theoretical calculated stiffnesses shown in Figure B.6 are significantly higher than the 

stiffnesses observed in the experimental force-displacement characteristic.   

 

 
Figure B.6. Theoretical calculation of the two stiffness regimes 

 

The deviation between the stiffness shown on the experimental and theoretically calculated 

force-displacement characteristics in Figure B.6 is large for both regimes. A possible cause 

for this might be from the assumption made in regards to the clamping in the clamped section. 

At the beginning of the Appendix it was assumed that the clamping in the clamped section is 

such that the individual blades within the clamped section are not able to move relative to one 

another implying that for this section the blades acted as a solid beam. This resulted in the 

system with the boundary conditions as was shown in Figure B.1. The imposed boundary 

conditions will definitely have an effect on the stiffness calculated for the leaf spring. The 

boundary condition effectively governs the effective length (or loaded length) of the leaf 

spring. As was shown in Chapter 2 the stiffness of a leaf spring is very sensitive to the loaded 

length. It was also shown in Chapter 2 that the stiffness of the leaf spring is sensitive to the 

preload of the U-bolts that are used to attach the axle to the leaf spring. The U-bolts are the 

components that apply the clamping force experienced in the clamped section. The sensitivity 

that was seen in the stiffness when changing the U-bolt preload was due to the boundary 

condition being changed. It is therefore expected that the theoretical stiffness will be just as 

sensitive to the boundary conditions of the clamped section as it will influence the loaded 

length used in the theoretical calculations. The effect of the clamping assumption and the 

resulting boundary condition on the theoretical stiffness calculation is investigated in more 

detail in the following paragraph.  

 

B.2. Effect of the clamping assumption on the theoretical stiffness 

 

It was mentioned that the assumption made with respect to the clamped section will influence 

the loaded length of the leaf spring and therefore affect the stiffness. Considering the equation 

for the stiffness of a prismatic cantilever beam given as Eq.{B.9} we can see that the stiffness 

has a relation of 3
hk ∝ and 

3

1

L
k ∝ .  
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3

3

4L

Ebh
k =               {B.9} 

 

From Eq.{B.9} it is clear that the stiffness has a high sensitivity to the thickness of the beam 

(h) and the length of the beam (L). Therefore, before we investigate the effect of the clamping 

assumption further we will confirm that the thickness used in the theoretical calculations is 

indeed the same as the thickness of the blades in the physical leaf spring. The thickness of 

each blade was measured at seven points spaced over the length of the blade. Table B.5 shows 

the measurements for the different blades and it can be seen that the thickness is rather 

uniform over the length of the blade; therefore the deviation in the theoretical stiffness 

observed in Figure B.6 is most probably not due to an incorrect thickness used in the 

theoretical stiffness calculations. 

 
Table B.5. Blade thickness measurements 

Measurements 1 2 3 4 5 6 7 Average Std 

Blade 8 14.1 14.1 14.1 14.1 14.1   14.1 0 

Blade 7 14.05 14.1 14.05 14.05 14.1   14.07 0.0274 

Blade 6 14 14 14 14.05 14.1   14.03 0.0447 

Blade 5 14.15 14 14 14.05 14   14.04 0.0652 

Blade 4 14 14 14 14.1 14.1   14.04 0.0548 

Blade 3 14 14 14 13.95 13.95 13.8 13.8 13.93 0.09 

Blade 2 13.8 13.9 14 13.95 14.05 14 13.9 13.94 0.084 

Blade 1 14.1 14.05 14.1 13.95 14.05 13.9 13.9 14 0.089 

 

The effect of the loaded length of the leaf spring on the stiffness is now investigated. The 

loaded length is a result of the assumption that is made for the type of clamping that is present 

in the clamped section. Considering the front cantilever the loaded length corresponds to the 

length of the cantilever (see Figure B.7). Figure B.7 shows the difference between the loaded 

length when the clamping in the clamped section is considered to be ideal and when there is 

no clamping. Up to now it has been assumed that the clamping is ideal. From Figure B.7 and 

Eq.{B.9} it is easy to deduct that the stiffness of the front cantilever using the assumption of 

ideal clamping will be higher than the stiffness of the cantilever for which no clamping is 

assumed.  

 

The comparison in Figure B.6 showed that the theoretical stiffness, when ideal clamping is 

assumed, is higher than the stiffness observed on the experimental force-displacement 

characteristic. Therefore, when we assume that there is no clamping, the theoretical stiffness 

should be lower. The result of the theoretical stiffness, with the assumption of no clamping, is 

shown in Figure B.8. From this figure it can be seen that the theoretical stiffness is indeed 

lower and that it correlates well with the stiffness observed on the experimental force-

displacement characteristic.     

 
 
 



A p p e n d i x  B                        T h e o r e t i c a l  s t i f f n e s s  o f  t h e  m u l t i - l e a f  s p r i n g  

 

 

186 

 
Figure B.7. Ideal vs. no clamping 

 

 
Figure B.8. Comparison between the measured force-displacement characteristic and the theoretically calculated 

stiffness assuming no clamping i.e. theoretical clamp length = 0m. 

 

The theoretical stiffness of the two regimes was calculated using either the assumption of 

ideal clamping or no clamping. It should however be noted that the clamping may be between 

the ideal and no clamping assumption. The results from Figure B.8 seem to indicate that the 
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no clamping assumption is a good assumption in this case. It is expected that the more rigid 

the clamping is on the physical leaf spring the closer it will be to ideal clamping. With a less 

rigid (or less stiff) clamped section the clamping will be closer to the no clamping 

assumption.    

  

B.3. Additional validation tests  
 

Figure B.8 showed good correlation between the theoretical calculated stiffness and the 

stiffness observed on the experimental force-displacement characteristic of the multi-leaf 

spring. Comparisons of the theoretical and experimental stiffness of three additional leaf 

spring configurations will be presented. The theoretical calculations will be done for both the 

ideal clamping and no clamping assumption. The three additional tests were performed with 

the leaf spring having three full length blades. Each test used a different physical clamped 

length: 

Test 1: 3 blade, clamped length = 0.076m 

Test 2: 3 blade, clamped length = 0.22m 

Test 3: 3 blade, clamped length = 0m 

 

Additional to these three tests, a fourth test was performed with the original leaf spring 

(having three full length blades and 5 non-full length blades) and a clamp length of 0m but the 

test setup broke and the measured data was not useful. A detailed discussion of each of the 

tests is given in the following sections. Note that for calculation of stiffness using the SAE 

spring design manual (1996) a stiffening factor (SF) of 1.5 is used when all blades are full 

length. 

 

B.3.1 Test 1: 3 blade, clamped length = 0.076m 
  

Figure B.9 shows the experimental setup of the 3 blade, full length leaf spring. The five non-

full length blades were rotated 90 degrees and created a clamped length of 0.076m. Figure 

B.10 shows the correlation between the theoretical and experimental stiffness for this 

configuration with the ideal clamping assumption. Figure B.11 shows the results for the no 

clamping assumption. 

 

 
Figure B.9. Experimental setup of leaf spring with three full length blades and clamp length = 0.076m 
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Figure B.10. Comparison between measured and theoretical stiffness for test 1 assuming ideal clamping  

 

 
Figure B.11. Comparison between measured and theoretical stiffness for test 1 assuming no clamping   

 

B.3.2 Test 2: 3 blade, clamped length = 0.22m 
 

This test setup is shown in Figure B.12. When the theoretical stiffness, calculated using the 

ideal clamping assumption, is compared to the measured stiffnes it is again observed that the 

theoretical stiffness is higher (see Figure B.13). Figure B.14(a) shows the correlation between 

the measured and theoretical stiffness when no clamping is assumed in the clamped section. 

With the assumption of no clamping being present in the clamped section the theoretical 

stiffness is lower than the measured stiffness. However, if a clamping is assumed that lies 

between the ideal and no clamping conditions the resulting theoretical stiffness correlates well 

with the measured stiffness (see Figure B.14(b)). The clamping between the ideal and no 

clamping conditions were simulated by setting the theoretical clamped length equal to 0.1m.  

 

 
 
 



T h e o r e t i c a l  s t i f f n e s s  o f  t h e  m u l t i - l e a f  s p r i n g                        A p p e n d i x  B  

 

 

189 

It was expected that if the no clamp assumption was used in the theoretical calculation of the 

stiffness will again show good correlation to the measured stiffness.  

 

 
Figure B.12. Experimental setup of leaf spring with three blades and clamp length = 0.22m 
 

 
Figure B.13. Comparison between measured and theoretical stiffness for test 2 assuming ideal clamping  

 

 
Figure B.14. Comparison between measured and theoretical stiffnes for test 2 (a) Assumed no clamping . (b) 

Assumed clamping is between ideal and no clamping condition  
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However, when the setup shown in Figure B.12 is modelled in a different way, the theoretical 

stiffness obtained, with the no clamp assumption, is improved. The setup was modelled as 

three full-length prismatic blades. Instead, if the setup is modelled as shown in Figure B.15 

the correlation obtained between the measured and theoretical stiffness is good when 

assuming a no clamping condition within the clamped section. The setup is modelled as 

having two sections. Section 1 has a length of 0.195m with the height being equal to the 

height of 8 blades. Section 2 is made up of three full length blades (see Figure B.15). In other 

words, the leaf spring effectively consisted out of three full length blades with five non-full 

length blades having equal length. The results using this model and the no clamping 

assumption are shown in Figure B.16 which correlate well with the measured stiffness. This 

shows that it is just as important to model the spring’s cross-sectional area correctly as it is to 

model the boundary condition correctly. 
 

 
Figure B.15. Leaf spring modelled as having three full length blades and 5 non-full length blades having equal 

length 

 

 
Figure B.16. Comparison between measured and theoretical stiffness for test 2 assuming no clamping and using 

the model shown in Figure B.15  
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B.3.3. Test 3: 3 blade, clamped length = 0m 
 

Figure B.17 shows the experimental setup of the leaf spring with 3 full-length blades and a 

clamp length of 0. Figure B.18 shows the comparison between the theoretical and measured 

stiffness for this setup. The correlation is not as good as obtained for the test in paragraph 

B.3.1 and B.3.2 with the theoretical stiffness being higher than the measured stiffness. A 

possible reason for the physical spring being less stiff than the theoretical values may be due 

to the presence of the hole of the centre bolt. This was investigated by including the hole in 

the theoretical calculations to see whether this has any effect. 

 

 
Figure B.17. Experimental setup of leaf spring with three full length blades and clamp length = 0m 

 

 
Figure B.18. Comparison between measured and theoretical stiffness for test 3  

 

It is postulated that when including the effect of the hole in the theoretical calculation that the 

correlation shown in Figure B.18 will improve. The hole removes material and should thus 

decrease the stiffness of the blade as it leads to a smaller area moment of inertia (see Figure 

B.19) .The hole was effectively treated as a square cut-out. 

 

 
Figure B.19. Effect of hole on the area moment of inertia 
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Figure B.20 shows the comparison between the measured stiffness and the theoretical 

stiffness, calculated without and with the hole using the method of super position. From the 

figure it can clearly be observed that the hole does not have a big effect on the theoretical 

stiffness of the spring. The reason for the deviation between the theoretical and measured 

stiffness is not clear. 

 
Figure B.20. Comparison between measured and theoretical stiffnesses (with and without hole) for test 3 

 

B.4. Conclusion 
 

The theoretical calculation of the stiffness of the two regimes in the force-displacement 

characteristic of the multi-leaf spring was investigated. It was shown that the stiffness regimes 

can be calculated using simple beam theory. The effect of the clamping assumption on the 

theoretical stiffness was shown. The clamping assumption influences the boundary conditions 

which is a similar effect that was obtained during the experimental characterisation in Chapter 

2. It was shown in Chapter 2 that the stiffness of the spring is sensitive to the U-bolt preload 

which governs how the leaf spring is constrained and is analogue to the clamping assumption 

which governs the boundary condition. The sensitivity that was shown by the theoretical 

stiffness calculation with respect to the clamping assumption and the loaded length shows 

good agreement to what was observed during the experimental characterisation of the leaf 

spring.   

 

The results in this appendix confirmed that the postulate of the two stiffness regimes being 

representative of a layered beam and solid beam behaviour is true. The results also indicate 

that the method can be used to theoretically calculate the stiffness of a multi-leaf spring. This 

method should be used on different leaf springs to confirm that it is generally applicable. It is 

suggested that the theoretical stiffness be used as a good estimator of the stiffness that can be 

expected for a specific leaf spring. The equation presented to calculate the stiffness of the 

layered leaf spring assumes that there is no friction present between individual blades. Future 

work should investigate ways to account for the friction between the blades in order to 

quantify the hysteresis loop. With the ability to account for the hysteresis and combining it 

with the theoretical stiffness of the two regimes will imply that the force-displacement 

characteristic can be calculated theoretically. This will be useful during early stages in the 

product development stage when physical leaf springs are not yet available or the 

configuration of the leaf spring is to be determined. This method will also enable the elasto-

plastic leaf spring to be parameterised theoretically 
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